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Today’s agenda

• Recap of the topics we focused until now using questions from the 
sample Midterm



Large-Scale Data is Everywhere

 There has been enormous data growth in both commercial 
and scientific databases due to advances in data 
generation and collection technologies

 New mantra
 Gather whatever data you can whenever and wherever 

possible.

 Expectations
 Gathered data will have value either for the purpose 

collected or for a purpose not envisioned.

Computational Simulations

Social Networking: Twitter 

Sensor Networks

Traffic Patterns

Cyber Security
E-Commerce



Data Mining Tasks

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

11 No Married 60K No 

12 Yes Divorced 220K No 

13 No Single 85K Yes 

14 No Married 75K No 

15 No Single 90K Yes 
10 

 

Milk

Data



Great Opportunities to solve Society’s Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Predicting the impact of climate change

Reducing hunger and poverty by 

increasing agriculture production



What is NOT Data Mining? 

 What is Data Mining?

– Certain names are more 
prevalent in certain US locations 
(O’Brien, O’Rourke, O’Reilly… in 
Boston area)

– Group together similar 
documents returned by search 
engine according to their context 
(e.g., Amazon rainforest, 
Amazon.com)

 What is not Data Mining?

– Look up phone number 
in phone directory

– Query a Web search 
engine for information 
about “Amazon”



Q2. Sample midterm 

A. Looking up phone number – not data mining

B. Group together similar documents returned by search engine 
according to their context – data mining 

C. Certain names are more prevalent in certain US locations – data 
mining 

D. Query a Web search engine – not data mining 



What is data? 

• Collection of data objects and their 
attributes

• According to Tan et al., 

• An attribute is a property or 
characteristic of an object

• Also known as variable, field, characteristic,
dimension, or feature

• A collection of attributes describe an 
object

• Also known as tuple, record, point, case, 
sample, etc.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Types of Attributes

• Nominal
• Examples: ID numbers, zip codes, eye color

• Ordinal 
• Examples: Rankings (expertise level on a scale of 1-10), 

grades, height {tall, medium, short}
• Interval 

• Examples: Calendar dates, temperature in Celsius or 
Fahrenheit 

• Ratio
• Examples: Temperature in Kelvin, length, time, counts



Q3. Important characteristics of data

• Dimensionality (number of attributes) 
• High dimensional data brings a number of challenges

• Sparsity 
• Only presence counts 

• Resolution 
• Patterns depend on the scale 

• Size 
• Type of analysis may depend on size of data



Data Preprocessing

• Aggregation 

• Sampling 

• Dimensionality Reduction 

• Feature subset selection 

• Feature creation 

• Discretization and Binarization

• Attribute Transformation



Aggregation

• Combining two or more attributes (or objects) into a single attribute 
(or object) 

• Purpose 
• Data reduction 

• Reduce the number of attributes or objects 

• Change of scale 
• Cities aggregated into regions, states, countries, etc. 

• Days aggregated into weeks, months, or years 

• More “stable” data 
• Aggregated data tends to have less variability



Example: Precipitation in Australia

• This example is based on precipitation in Australia from the period 
1982 to 1993. 

• The next slide shows 
• A histogram for the standard deviation of average monthly precipitation for 

3,030 0.5◦ by 0.5◦ grid cells in Australia, and 
• A histogram for the standard deviation of the average yearly precipitation for 

the same locations. 

• The average yearly precipitation has less variability than the average 
monthly precipitation. 

• All precipitation measurements (and their standard deviations) are in 
centimeters.



Example: Precipitation in Australia.. 

• Variation of precipitation in Australia

Standard Deviation of Average 

Monthly Precipitation

Standard Deviation of 

Average Yearly Precipitation



Sampling

• Sampling is the main technique employed for data reduction. 
• It is often used for both the preliminary investigation of the data and the final 

data analysis. 

• Statisticians often sample because obtaining the entire set of data of 
interest is too expensive or time consuming. 

• Sampling is typically used in data mining because processing the 
entire set of data of interest is too expensive or time consuming.



Sampling

• The key principle for effective sampling is the following: 
• Using a sample will work almost as well as using the entire data set, if the 

sample is representative

• A sample is representative if it has approximately the same properties (of 
interest) as the original set of data



Sample size

8000 points 2000 Points 500 Points



Types of Sampling

• Simple Random Sampling 
• There is an equal probability of selecting any particular item 

• Sampling without replacement 
• As each item is selected, it is removed from the population 

• Sampling with replacement 
• Objects are not removed from the population as they are selected for the sample. 

• In sampling with replacement, the same object can be picked up more than once 

• Stratified sampling 
• Split the data into several partitions; then draw random samples from each 

partition



Curse of dimensionality

When dimensionality increases, data becomes 
increasingly sparse in the space that it occupies



Dimensionality Reduction

• Purpose:
• Avoid curse of dimensionality

• Reduce amount of time and memory required by data mining algorithms

• Allow data to be more easily visualized

• May help to eliminate irrelevant features or reduce noise

• Techniques
• Principal Components Analysis (PCA)

• Singular Value Decomposition

• Others: supervised and non-linear techniques



Q4. Sample midterm

A. Why do we need to perform dimensionality reduction?

Addressing sparsity due to the curse of dimensionality, reduce 
redundancy, sometimes overfitting, etc. 

B. Provide one approach to reduce dimensionality 

Principal Component Analysis

- Standardize; Covariance matrix; Compute eigenvalues and 
eigenvectors; top-K pcs; Map original data to new PCs space



Q4. Sample midterm

C. Most important eigenvector 
of the matrix

Most important eigenvector will 

be corresponding to 

eigenvalue=6



Q4. Sample midterm

Eigenvector with eigenvalue=6



Feature subset Selection

• Another way to reduce dimensionality of data

• Redundant features 
• Duplicate much or all of the information contained in one or more other 

attributes

• Example: purchase price of a product and the amount of sales tax paid

• Irrelevant features
• Contain no information that is useful for the data mining task at hand

• Example: students' ID is often irrelevant to the task of predicting students' 
GPA

• Many techniques developed, especially for classification



Feature Creation

• Create new attributes that can capture the important information in a 
data set much more efficiently than the original attributes

• Three general methodologies:
• Feature extraction

• Example: extracting edges from images

• Feature construction

• Example: dividing mass by volume to get density

• Mapping data to new space
• Example: Fourier and wavelet analysis 



Discretization

• Discretization is the process of converting a continuous attribute into 
an ordinal attribute

• A potentially infinite number of values are mapped into  a small number of 
categories

• Discretization is commonly used in classification

• Many classification algorithms work best if both the independent and 
dependent variables have only a few values



Binarization

• Binarization maps a continuous or categorical attribute into one or 
more binary variables

• Typically used for association analysis

• Often convert a continuous attribute to a categorical attribute and 
then convert a categorical attribute to a set of binary attributes

• Association analysis needs asymmetric binary attributes
• Examples: eye color and height measured as 

{low, medium, high}



Attribute Transformation

• An attribute transform is a function that maps the entire set of values 
of a given attribute to a new set of replacement values such that each 
old value can be identified with one of the new values

• Simple functions: xk, log(x), ex, |x|

• Normalization
• Refers to various techniques to adjust to differences among attributes in 

terms of frequency of occurrence, mean, variance, range

• Take out unwanted, common signal, e.g., seasonality  

• In statistics, standardization refers to subtracting off the means and dividing 
by the standard deviation



Data Quality …

• What kinds of data quality problems?

• How can we detect problems with the data? 

• What can we do about these problems? 

• Examples of data quality problems: 
• Noise and outliers 

• Missing values 

• Duplicate data 

• Wrong data



Information and Probability

• Information relates to possible outcomes of an event 
• transmission of a message, flip of a coin, or measurement of a piece of data 

• The more certain an outcome, the less information that it contains 
and vice-versa

• For example, if a coin has two heads, then an outcome of heads provides no 
information

• More quantitatively, the information is related the probability of an outcome
• The smaller the probability of an outcome, the more information it provides and vice-

versa

• Entropy is the commonly used measure



Entropy

• For 
• a variable (event), X, 
• with n possible values (outcomes), x1, x2 …, xn

• each outcome having probability, p1, p2 …, pn

• the entropy of X , H(X), is given by

𝐻 𝑋 = −෍

𝑖=1

𝑛

𝑝𝑖log2 𝑝𝑖

• Entropy is between 0 and log2n and is measured in bits
• Thus, entropy is a measure of how many bits it takes to represent an observation of 

X on average



Entropy Examples

• For a coin with probability p of heads and probability q = 1 – p of tails

𝐻 = −𝑝 log2 𝑝 −𝑞 log2 𝑞

• For p= 0.5, q = 0.5 (fair coin) H = 1

• For p = 1 or q = 1, H = 0

• What is the entropy of a fair four-sided die ? 



Entropy for Sample Data: Example

Hair Color Count p -plog2p

Black 75 0.75 0.3113

Brown 15 0.15 0.4105

Blond 5 0.05 0.2161

Red 0 0.00 0

Other 5 0.05 0.2161

Total 100 1.0 1.1540



Entropy for Sample Data

• Suppose we have 
• a number of observations (m) of some attribute, X, e.g., the gpa (assuming 

rounded values) of students in the class, 
• where there are n different possible values
• And the number of observation in the ith category is mi

• Then, for this sample

𝐻 𝑋 = −෍

𝑖=1

𝑛
𝑚𝑖

𝑚
log2

𝑚𝑖

𝑚

• For continuous data, the calculation is harder



Mutual Information

• Information one variable provides about another -- it quantifies the "amount of information" obtained about 
one random variable through observing the other random variable

Formally, 𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌), where

H(X,Y) is the joint entropy of X and Y, 

𝐻 𝑋, 𝑌 = −෍

𝑖

෍

𝑗

𝑝𝑖𝑗log2 𝑝𝑖𝑗

Where pij is the probability that the ith value of X and the jth value of Y occur together 

• For discrete variables, this is easy to compute

• Maximum mutual information for discrete variables is 
log2(min( nX, nY ), where nX (nY) is the number of values of X (Y) 



Mutual Information Example
Student 
Status

Count p -plog2p

Undergrad 45 0.45 0.5184

Grad 55 0.55 0.4744

Total 100 1.00 0.9928

Grade Count p -plog2p

A 35 0.35 0.5301

B 50 0.50 0.5000

C 15 0.15 0.4105

Total 100 1.00 1.4406

Student 
Status

Grade Count p -plog2p

Undergrad A 5 0.05 0.2161

Undergrad B 30 0.30 0.5211

Undergrad C 10 0.10 0.3322

Grad A 30 0.30 0.5211

Grad B 20 0.20 0.4644

Grad C 5 0.05 0.2161

Total 100 1.00 2.2710

Mutual information of Student Status and Grade =  0.9928 + 1.4406 - 2.2710 = 0.1624



Similarity and Dissimilarity Measures

• Similarity measure
• Numerical measure of how alike two data objects are.

• Is higher when objects are more alike.

• Often falls in the range [0,1]

• Dissimilarity measure
• Numerical measure of how different two data objects are 

• Lower when objects are more alike

• Minimum dissimilarity is often 0

• Upper limit varies

• Proximity refers to a similarity or dissimilarity



The following table shows the similarity and dissimilarity 

between two objects, x and y, with respect to a single, simple 

attribute.

Similarity/Dissimilarity for Simple Attributes



• Euclidean Distance

where n is the number of dimensions (attributes) and xk and yk are, 
respectively, the kth attributes (components) or data objects x and y.

• Standardization is necessary, if scales differ.

Euclidean Distance



0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Euclidean Distance



• Minkowski Distance is a generalization of Euclidean Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and xk and yk are, respectively, the kth attributes 
(components) or data objects x and y.

Minkowski Distance



• r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
• A common example of this is the Hamming distance, which is just the number 

of bits that are different between two binary vectors

• r = 2.  Euclidean distance

• r .  “supremum” (Lmax norm, L norm) distance. 
• This is the maximum difference between any component of the vectors

• Do not confuse r with n, i.e., all these distances are defined for all 
numbers of dimensions.

Minkowski Distance: Examples



Minkowski Distance

Distance Matrix

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0



For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

 is the covariance matrix

𝐦𝐚𝐡𝐚𝐥𝐚𝐧𝐨𝐛𝐢𝐬 𝐱, 𝐲 = (𝐱 − 𝐲)𝑇 Ʃ−1(𝐱 − 𝐲)

Mahalanobis Distance



Mahalanobis Distance
Covariance 

Matrix:











3.02.0

2.03.0

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4 

B

A

C



• Distances, such as the Euclidean distance, have some well known 
properties.

1. d(x, y)  0   for all x and y and d(x, y) = 0 only if 
x = y. (Positive definiteness)

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z)  d(x, y) + d(y, z) for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points (data objects), x
and y.

• A distance that satisfies these properties is a metric

Q1. Common Properties of a Distance



• Similarities, also have some well known properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 

2. s(x, y) = s(y, x) for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data objects), x and 
y.

Common Properties of a Similarity



• Common situation is that objects, p and q, have only binary attributes

• Compute similarities using the following quantities
f01 = the number of attributes where p was 0 and q was 1
f10 = the number of attributes where p was 1 and q was 0
f00 = the number of attributes where p was 0 and q was 0
f11 = the number of attributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (f11 + f00) / (f01 + f10 + f11 + f00)

J = number of 11 matches / number of non-zero attributes
= (f11) / (f01 + f10 + f11) 

Similarity Between Binary Vectors



x =  1 0 0 0 0 0 0 0 0 0    

y =  0 0 0 0 0 0 1 0 0 1

f01 = 2   (the number of attributes where p was 0 and q was 1)

f10 = 1   (the number of attributes where p was 1 and q was 0)

f00 = 7   (the number of attributes where p was 0 and q was 0)

f11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (f11 + f00) / (f01 + f10 + f11 + f00)

= (0+7) / (2+1+0+7) = 0.7 

J = (f11) / (f01 + f10 + f11) = 0 / (2 + 1 + 0) = 0 

SMC versus Jaccard: Example



• If d1 and d2 are two document vectors, then
cos( d1, d2 ) = <d1,d2> / ||d1|| ||d2|| ,

where <d1,d2> indicates inner product or vector dot product of vectors, d1 and d2,

and || d || is the length of vector d.

• Example:

d1 = 3 2 0 5 0 0 0 2 0 0

d2 =  1 0 0 0 0 0 0 1 0 2
<d1, d2> =  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

| d1 || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

|| d2 || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.449

cos(d1, d2 ) = 0.3150

Cosine Similarity



Q1. Edit distance 

S1 = “cat”; 

S2 = “dog”

3 operations of replace a character in string S2. Edit distance of 3. 

Common operations allowed for this purpose include: 

a. insert a character into a string;

b. delete a character from a string;

c. replace a character in the string. 



Linear Regression

The technique is used to predict the value of one variable (the 
dependent variable - y) based on the value of other variables 
(independent variables x1, x2,…xk) 

  xy 10



Modeling

• The first order linear model

y = dependent variable

x = independent variable

0 = y-intercept

1 = slope of the line

= error variable x

y

0
Run

Rise 1 = Rise/Run

0 and 1 are unknown,
therefore, are estimated 
from the data.



Estimating the coefficients

• The estimates are determined by 
• drawing a sample from the population of interest,

• calculating sample statistics.

• producing a straight line that cuts into the data.

w

w

w

w
w  w  w      w

w

w   w

w

w  w

w

The question is:
Which straight line fits best?

x

y



3

3

The best line is the one that minimizes the sum of squared 
vertical differences between the points and the line.

w

w

w

w

41

1

4

(1,2)

2

2

(2,4)

(3,1.5)

Sum of squared differences =(2 - 1)2 +(4 - 2)2 +(1.5 - 3)2 +

(4,3.2)

(3.2 - 4)2 = 6.89

Sum of squared differences =(2 -2.5)2 +(4 - 2.5)2 +(1.5 - 2.5)2 +(3.2 - 2.5)2 = 3.99

2.5

Let us compare two lines

The second line is horizontal

The smaller the sum of 
squared differences
the better the fit of the 
line to the data.

0

0

Q5. Best regression line



Logistic Regression

• Special case of linear regression where the target variable is 
categorical in nature

• Uses a log of odds as a dependent variable 

• Predicts the probability of occurrence of an event using a sigmoid 
function (inverse of logit function)

)1/(1
)( 22110 XX

ep
 





Linear vs Logistic Regression

• Output for linear regression is continuous
• For example, stock prices

• Or real estate price estimation

• Output for logistic regression is estimated as a constant
• For example, predicting if a sample is tested +ve or –ve

• Output >0.5 is +ve or 1 or yes; ouput <=0.5 is –ve or 0 or no



Linear vs Logistic Regression

• Linear regression is estimated using ordinary least squares
• Distance minimizing approximation approach

• Fits a regression line on a given set of data points that has the minimum sum 
of squared deviations (least squared error)

• Logistic regression is estimated using maximum likelihood estimation
• “Likelihood” maximization method

• Determines parameters (such as mean/variance) that are most likely to 
produce the set of data points.  



Example of a Decision Tree

ID 
Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Home 

Owner

MarSt

Income

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree



Another Example of Decision Tree

MarSt

Home 

Owner

Income

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 

fits the same data!

ID 
Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Design Issues of Decision Tree Induction

• How should training records be split?
– Method for specifying test condition 

– depending on attribute types

– Measure for evaluating the goodness of a test condition

• How should the splitting procedure stop?
– Stop splitting if all the records belong to the same class or have identical 

attribute values

– Early termination 



Methods for Expressing Test Conditions

• Depends on attribute types
– Binary

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split
– 2-way split

– Multi-way split



Test Condition for Ordinal Attributes

 Multi-way split:

– Use as many partitions as 
distinct values. 

 Binary split:

– Divides values into two subsets

– Preserve order property among 
attribute values

Large

Shirt

Size

Medium
Extra Large

Small

{Medium, Large,

Extra Large}

Shirt

Size

{Small}{Large,

Extra Large}

Shirt

Size

{Small,

Medium}

{Medium,

Extra Large}

Shirt

Size

{Small,

Large}

This grouping violates 

order property



How to determine the best split

• Greedy approach: 
– Nodes with purer class distribution are preferred

• Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity Low degree of impurity



Measures of Node Impurity

• Gini Index

• Entropy

• Misclassification error


j

tjptGINI 2)]|([1)(


j

tjptjptEntropy )|(log)|()(

)|(max1)( tiPtError
i





Finding the best split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting
1. Compute impurity measure of each child node

2. M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain

or equivalently, lowest impurity measure after splitting (M) 

Gain = P – M



Measure of Impurity: Entropy

• Entropy at a given node t:

• (NOTE: p( j | t) is the relative frequency of class j at node t).
• Maximum (log nc) when records are equally distributed among all classes 

implying least information
• Minimum (0.0) when all records belong to one class, implying most 

information

• Entropy based computations are quite similar to the GINI index 
computations


j

tjptjptEntropy )|(log)|()(



Computing Entropy of a Single Node

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 


j

tjptjptEntropy )|(log)|()(
2

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92



Computing Information Gain after Splitting

• Information Gain

Parent Node, p is split into k partitions; ni is number of records in partition i

• Choose the split that achieves most reduction (maximizes GAIN)

• Used in ID3 and C4.5 decision tree algorithms









 



k

i

i

split
iEntropy

n

n
pEntropyGAIN

1

)()(



Q6. Sample Midterm – Decision Trees

a. 10 transactions with 

Class labels {Yes, No}

I(Y, N) = I(7, 3) = 0.98

P(<=5) = 3/10

P(5..10) = 3/10

P(>10) = 4/10

Attribute-A Yi Ni

<=5 3 0

5..10 1 2

>10 2 2

Entropy_attr-A = 0.68

Info_gain_attr-A = 0.3



Q6. Sample midterm – Decision Trees

a. b. 10 transactions with 

Class labels {Yes, No}

I(Y, N) = I(7, 3) = 0.98

P(Yes) = 7/10

P(No) = 3/10

Attribute-B Yi Ni

Yes 3 4

No 1 2

Entropy_attr-B = 0.97

Info_gain_attr-B = 0.01


