
Applied Analytics and
Predictive Modeling

Spring 2021

Lecture-17

Lydia Manikonda

manikl@rpi.edu

Some of the slides adapted from Intro to Data Mining Tan et al. 2nd edition

mailto:kuruzj@rpi.edu

Today’s agenda

• Announcements

• Handling timeseries data

• Association Rules

• Class Exercises

Announcements

• Deadlines pushed to 1 week back

Manipulating Timeseries

• Python notebook

• Final exam

Association Rules (Focus on Frequent Itemsets)

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence
of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

{Diaper}  {Beer},

{Milk, Bread}  {Eggs,Coke},

{Beer, Bread}  {Milk},

Implication means co-occurrence,

not causality!

Example of Association Rules

Definitions

• Itemset
• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset

• An itemset that contains k items

• Support count ()
• Frequency of occurrence of an itemset

• E.g. ({Milk, Bread, Diaper}) = 2

• Support
• Fraction of transactions that contain an itemset

• E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
• An itemset whose support is greater than or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example – Itemset metrics

• Itemset (I1): {Bread, Milk, Diaper}

• Support

#occurrences (support count) = 2

Fraction of occurrences (support) = 2/5

• Lets say minsup = 0.1

• Is I1 a frequent itemset?

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Yes
Support of I1 =0.4 (> minsup)

Association Rule

• Association Rule
• An implication expression of the form X  Y,

where X and Y are itemsets

• Example:
{Milk, Diaper}  {Beer}

• Rule Evaluation Metrics
• Support (s)

• Fraction of transactions that contain both X and Y

• Confidence (c)
• Measures how often items in Y appear in

transactions that contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example – Association Rule

• {Milk, Diaper} => {Beer}

• Support

• Confidence

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to
find all rules having
• support ≥ minsup threshold

• confidence ≥ minconf threshold

• Brute-force approach:
• List all possible association rules

• Compute the support and confidence for each rule

• Prune rules that fail the minsup and minconf thresholds

 Computationally prohibitive!

Mining Association Rules

Observations:

• All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

Example of Rules:

{Milk,Diaper}  {Beer} (s=0.4, c=0.67)
{Milk,Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper,Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk,Diaper} (s=0.4, c=0.67)
{Diaper}  {Milk,Beer} (s=0.4, c=0.5)
{Milk}  {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Mining Association Rules

• Two-step approach:
1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a binary

partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are

2d possible candidate itemsets

Frequent Itemset Generation

• Brute-force approach:
• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database

• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Frequent Itemset Generation Strategies

• Reduce the number of candidates (M)
• Complete search: M=2d

• Use pruning techniques to reduce M

• Reduce the number of transactions (N)
• Reduce size of N as the size of itemset increases

• Used by DHP and vertical-based mining algorithms

• Reduce the number of comparisons (NM)
• Use efficient data structures to store the candidates or transactions

• No need to match every candidate against every transaction

Reducing Number of Candidates

• Apriori principle:
• If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support
measure:

• Support of an itemset never exceeds the support of its subsets

• This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned

supersets

Found to be

Infrequent

Illustrating Apriori Principle

Minimum Support = 3

TID Items

1 Bread, Milk

2 Beer, Bread, Diaper, Eggs

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Bread, Coke, Diaper, Milk

Items (1-itemsets)

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Illustrating Apriori Principle

Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

TID Items

1 Bread, Milk

2 Beer, Bread, Diaper, Eggs

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Itemset

{Bread,Milk}
{Bread, Beer }

{Bread,Diaper}
{Beer, Milk}

{Diaper, Milk}
{Beer,Diaper}

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Beer, Bread} 2

{Bread,Diaper} 3
{Beer,Milk} 2

{Diaper,Milk} 3
{Beer,Diaper} 3

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2

{Bread,Diaper} 3
{Milk,Beer} 2

{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset

{ Beer, Diaper, Milk}
{ Beer,Bread,Diaper}

{Bread, Diaper, Milk}
{ Beer, Bread, Milk}

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Illustrating Apriori Principle
Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2

{Bread,Diaper} 3
{Milk,Beer} 2

{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{ Beer, Diaper, Milk}
{ Beer,Bread, Diaper}

{Bread, Diaper, Milk}
{Beer, Bread, Milk}

2
2

2
1

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Apriori Algorithm

• Fk: frequent k-itemsets
• Lk: candidate k-itemsets

• Algorithm
• Let k=1
• Generate F1 = {frequent 1-itemsets}
• Repeat until Fk is empty

• Candidate Generation: Generate Lk+1 from Fk

• Candidate Pruning: Prune candidate itemsets in Lk+1 containing subsets of length k that
are infrequent

• Support Counting: Count the support of each candidate in Lk+1 by scanning the DB
• Candidate Elimination: Eliminate candidates in Lk+1 that are infrequent, leaving only

those that are frequent => Fk+1

Candidate Generation: Brute-Force Method

Candidate Generation: Merge Fk-1 and Fk-1 itemsets

Candidate Generation: Merge Fk-1 and Fk-1 itemsets

Candidate Generation: Merge Fk-1 and Fk-1 itemsets

• Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, ABD) = ABCD

• Merge(ABC, ABE) = ABCE

• Merge(ABD, ABE) = ABDE

• Do not merge(ABD,ACD) because they share only prefix of length 1 instead of
length 2

Candidate Pruning

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-
itemsets

• L4 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated
(from previous slide)

• Candidate pruning
• Prune ABCE because ACE and BCE are infrequent
• Prune ABDE because ADE is infrequent

• After candidate pruning: L4 = {ABCD}

Alternate Fk-1 x Fk-1 Method

• Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is
identical to the first (k-2) items of the second.

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, BCD) = ABCD

• Merge(ABD, BDE) = ABDE

• Merge(ACD, CDE) = ACDE

• Merge(BCD, CDE) = BCDE

Candidate Pruning for Alternate Fk-1 x Fk-1 Method

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-
itemsets

• L4 = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets
generated (from previous slide)

• Candidate pruning
• Prune ABDE because ADE is infrequent

• Prune ACDE because ACE and ADE are infrequent

• Prune BCDE because BCE

• After candidate pruning: L4 = {ABCD}

Illustrating Apriori Principle
Item Count

Bread 4
Coke 2

Milk 4
Beer 3

Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2

{Bread,Diaper} 3
{Milk,Beer} 2

{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{Bread, Diaper, Milk}

2

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 1 = 13 Use of Fk-1xFk-1 method for candidate generation results in

only one 3-itemset. This is eliminated after the support counting

step.

Exercise-1

Transaction 1 Apple, beer, rice, chicken

Transaction 2 Apple, beer, rice

Transaction 3 Apple, beer

Transaction 4 Milk, beer, rice, chicken

Transaction 5 Milk, beer, rice

Transaction 6 Milk, beer

Find all the frequent itemsets where, min_sup = 0.2

Exercise-2

• Using Apriori algorithm, identify frequent itemsets where min_sup =2

Transaction 1 a, b, e

Transaction 2 b, d

Transaction 3 b, c

Transaction 4 a, b, d

Transaction 5 a, c

Transaction 6 b, c

Transaction 7 a, c

Transaction 8 a, b, c, e

Transaction 9 a, b, c

