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Today’s agenda

• Announcements

• Handling timeseries data

• Association Rules

• Class Exercises



Announcements

• Deadlines pushed to 1 week back



Manipulating Timeseries

• Python notebook 

• Final exam



Association Rules (Focus on Frequent Itemsets)



Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence 
of an item based on the occurrences of other items in the transaction. 

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

{Diaper}  {Beer},

{Milk, Bread}  {Eggs,Coke},

{Beer, Bread}  {Milk},

Implication means co-occurrence, 

not causality!

Example of Association Rules



Definitions

• Itemset
• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset

• An itemset that contains k items

• Support count ()
• Frequency of occurrence of an itemset

• E.g.   ({Milk, Bread, Diaper}) = 2 

• Support
• Fraction of transactions that contain an itemset

• E.g.   s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
• An itemset whose support is greater than or equal to a minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Example – Itemset metrics

• Itemset (I1): {Bread, Milk, Diaper}

• Support 

#occurrences (support count) = 2

Fraction of occurrences (support) = 2/5

• Lets say minsup = 0.1

• Is I1 a frequent itemset? 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs  

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Yes
Support of I1 =0.4 (> minsup)



Association Rule

• Association Rule
• An implication expression of the form X  Y, 

where X and Y are itemsets

• Example:
{Milk, Diaper}  {Beer}

• Rule Evaluation Metrics
• Support (s)

• Fraction of transactions that contain both X and Y

• Confidence (c)
• Measures how often items in Y appear in 

transactions that contain X

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs  

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Example – Association Rule

• {Milk, Diaper} => {Beer}

• Support 

• Confidence

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs  

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to 
find all rules having 
• support ≥ minsup threshold

• confidence ≥ minconf threshold

• Brute-force approach:
• List all possible association rules

• Compute the support and confidence for each rule

• Prune rules that fail the minsup and minconf thresholds

 Computationally prohibitive!



Mining Association Rules

Observations:

• All the above rules are binary partitions of the same itemset: 
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

Example of Rules:

{Milk,Diaper}  {Beer} (s=0.4, c=0.67)
{Milk,Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper,Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk,Diaper} (s=0.4, c=0.67) 
{Diaper}  {Milk,Beer} (s=0.4, c=0.5) 
{Milk}  {Diaper,Beer} (s=0.4, c=0.5)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs  

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Mining Association Rules

• Two-step approach: 
1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a binary 

partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive



Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 

2d possible candidate itemsets



Frequent Itemset Generation

• Brute-force approach: 
• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database

• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Frequent Itemset Generation Strategies

• Reduce the number of candidates (M)
• Complete search: M=2d

• Use pruning techniques to reduce M

• Reduce the number of transactions (N)
• Reduce size of N as the size of itemset increases

• Used by DHP and vertical-based mining algorithms

• Reduce the number of comparisons (NM)
• Use efficient data structures to store the candidates or transactions

• No need to match every candidate against every transaction



Reducing Number of Candidates

• Apriori principle:
• If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support 
measure:

• Support of an itemset never exceeds the support of its subsets

• This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 



Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets

Found to be 

Infrequent



Illustrating Apriori Principle

Minimum Support = 3

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 



Illustrating Apriori Principle

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 



Illustrating Apriori Principle

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset 

{Bread,Milk}  
{Bread, Beer } 

{Bread,Diaper} 
{Beer, Milk} 

{Diaper, Milk} 
{Beer,Diaper} 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16



Illustrating Apriori Principle

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Beer, Bread} 2 

{Bread,Diaper} 3 
{Beer,Milk} 2 

{Diaper,Milk} 3 
{Beer,Diaper} 3 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16



Illustrating Apriori Principle

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Bread,Beer} 2 

{Bread,Diaper} 3 
{Milk,Beer} 2 

{Milk,Diaper} 3 
{Beer,Diaper} 3 

 

Itemset 

{ Beer, Diaper, Milk} 
{ Beer,Bread,Diaper} 

{Bread, Diaper, Milk} 
{ Beer, Bread, Milk} 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16



Illustrating Apriori Principle
Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Bread,Beer} 2 

{Bread,Diaper} 3 
{Milk,Beer} 2 

{Milk,Diaper} 3 
{Beer,Diaper} 3 

 

Itemset Count 

{ Beer, Diaper, Milk} 
{ Beer,Bread, Diaper} 

{Bread, Diaper, Milk} 
{Beer, Bread, Milk} 

2 
2 

2 
1 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16



Apriori Algorithm

• Fk: frequent k-itemsets
• Lk: candidate k-itemsets

• Algorithm
• Let k=1
• Generate F1 = {frequent 1-itemsets}
• Repeat until Fk is empty

• Candidate Generation: Generate Lk+1 from Fk

• Candidate Pruning: Prune candidate itemsets in Lk+1 containing subsets of length k that 
are infrequent 

• Support Counting: Count the support of each candidate in Lk+1 by scanning the DB
• Candidate Elimination: Eliminate candidates in Lk+1 that are infrequent, leaving only 

those that are frequent => Fk+1 



Candidate Generation: Brute-Force Method



Candidate Generation: Merge Fk-1 and Fk-1 itemsets



Candidate Generation: Merge Fk-1 and Fk-1 itemsets



Candidate Generation: Merge Fk-1 and Fk-1 itemsets

• Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, ABD) = ABCD

• Merge(ABC, ABE) = ABCE

• Merge(ABD, ABE) = ABDE

• Do not merge(ABD,ACD) because they share only prefix of length 1 instead of 
length 2



Candidate Pruning

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-
itemsets

• L4 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated 
(from previous slide)

• Candidate pruning
• Prune ABCE because ACE and BCE are infrequent
• Prune ABDE because ADE is infrequent

• After candidate pruning: L4 = {ABCD} 



Alternate Fk-1 x Fk-1 Method

• Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is 
identical to the first (k-2) items of the second.

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, BCD) = ABCD

• Merge(ABD, BDE) = ABDE

• Merge(ACD, CDE) = ACDE

• Merge(BCD, CDE) = BCDE



Candidate Pruning for Alternate Fk-1 x Fk-1 Method

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-
itemsets

• L4 = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets 
generated (from previous slide)

• Candidate pruning
• Prune ABDE because ADE is infrequent

• Prune ACDE because ACE and ADE are infrequent

• Prune BCDE because BCE 

• After candidate pruning: L4 = {ABCD} 



Illustrating Apriori Principle
Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Bread,Beer} 2 

{Bread,Diaper} 3 
{Milk,Beer} 2 

{Milk,Diaper} 3 
{Beer,Diaper} 3 

 

Itemset Count 

 
{Bread, Diaper, Milk} 

 

 
2 

 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 1 = 13 Use of Fk-1xFk-1 method for candidate generation results in

only one 3-itemset.  This is eliminated after the support counting 

step.



Exercise-1

Transaction 1 Apple, beer, rice, chicken

Transaction 2 Apple, beer, rice

Transaction 3 Apple, beer

Transaction 4 Milk, beer, rice, chicken

Transaction 5 Milk, beer, rice

Transaction 6 Milk, beer

Find all the frequent itemsets where, min_sup = 0.2 



Exercise-2

• Using Apriori algorithm, identify frequent itemsets where min_sup =2 

Transaction 1 a, b, e

Transaction 2 b, d

Transaction 3 b, c

Transaction 4 a, b, d

Transaction 5 a, c

Transaction 6 b, c

Transaction 7 a, c

Transaction 8 a, b, c, e

Transaction 9 a, b, c


