Applied Analytics and Predictive Modeling Spring 2021
 Lecture-17

Lydia Manikonda manikl@rpi.edu

Today's agenda

- Announcements
- Handling timeseries data
- Association Rules
- Class Exercises

Announcements

- Deadlines pushed to 1 week back

Manipulating Timeseries

- Python notebook
- Final exam

Association Rules (Focus on frequent temsest)

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} -> {Beer},
{Milk, Bread} }->\mathrm{ {Eggs,Coke},
{Beer, Bread} }->\mathrm{ {Milk},
Implication means co-occurrence, not causality!
```


Definitions

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread, Diaper\}) $=2$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Support
- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

Example - Itemset metrics

- Itemset (I1): \{Bread, Milk, Diaper\}
- Support
\#occurrences (support count) = 2
Fraction of occurrences (support) $=2 / 5$

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Lets say minsup $=0.1$
- Is I1 a frequent itemset?

```
Yes
Support of I1 =0.4 (> minsup)
```


Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow$ Beer $\}$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

Example - Association Rule

- \{Milk, Diaper\} => \{Beer\}
- Support

$$
s=\frac{\sigma(\text { Milk, Diaper,Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4
$$

- Confidence

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$
c=\frac{\sigma(\text { Milk, Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
$$

Association Rule Mining Task

- Given a set of transactions T , the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

$$
\begin{aligned}
& \{\text { Milk,Diaper }\} \rightarrow\{\text { Beer }\}(s=0.4, c=0.67) \\
& \{\text { Milk,Beer }\} \rightarrow\{\text { Diaper }\}(s=0.4, c=1.0) \\
& \{\text { Diaper, Beer }\} \rightarrow\{\text { Milk }\}(s=0.4, c=0.67) \\
& \{\text { Beer }\} \rightarrow\{\text { Milk,Diaper }\}(s=0.4, c=0.67) \\
& \{\text { Diaper }\} \rightarrow\{\text { Milk,Beer }\}(s=0.4, c=0.5) \\
& \{\text { Milk }\} \text { \{Diaper,Beer }\}(s=0.4, c=0.5)
\end{aligned}
$$

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Given d items, there are $2^{\text {d }}$ possible candidate itemsets

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions List of

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since $M=2^{d}$!!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\text {d }}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support $=3$
If every subset is considered,
${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$
$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

TID	Items
1	Bread, Milk
2	Beer, B read, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

$$
\text { Minimum Support }=3
$$

If every subset is considered,
${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$
$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
\{Bread, Milk \}
\{Bread, Beer \}
\{Bread,Diaper $\}$
\{Beer, Milk $\}$
\{Diaper, Milk $\}$
\{Beer,Diaper $\}$

Pairs (2-itemsets)
(No need to generate candidates involving Coke or Eggs)

Minimum Support $=3$
If every subset is considered,

$$
\begin{aligned}
& { }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3} \\
& 6+15+20=41
\end{aligned}
$$

With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

Item	Count	Items (1-itemsets)		
Bread	4			
Coke	2			
Milk	4	Itemset	Count	Pairs (2-itemsets)
Beer	3	\{Bread, Milk \}	3	
Diaper	4	\{Beer, Bread\}	2	(No need to generate
Eggs	1	\{Bread,Diaper\}	3	candidates involving Coke
		\{Beer,Milk \}	2	
		\{Diaper,Milk\} \{Beer,Diaper\}	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	

Minimum Support = 3
If every subset is considered,
${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$
$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

Triplets (3-itemsets)
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}
$$

Itemset

$$
6+15+20=41
$$

\{ Beer, Diaper, Milk \}
\{ Beer, Bread,Diaper \}
With support-based pruning,
\{Bread, Diaper, Milk\}
$6+6+4=16$
\{Beer, Bread, Milk\}

Illustrating Apriori Principle

Item	Count	Items (1-itemsets)			
Bread	4				
Coke	2				Pairs (2-itemsets)(No need to generate
Milk Beer Diaper	4		Itemset	Count	
	3		\{Bread, Milk \}	3	
	4		\{Bread,Beer\}	2	
	1		\{Bread,Diaper\}	3	candidates involving Coke or Eggs)
			\{Milk,Beer\}	2	
			\{Milk,Diaper\}	3	
Minimum Support $=3$					

Triplets (3-itemsets)
If every subset is considered,
${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$
$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Itemset	Count
\{ Beer, Diaper, Milk \}	2
\{ Beer, Bread, Diaper\}	2
\{Bread, Diaper, Milk\}	2
\{Beer, Bread, Milk\}	1

Apriori Algorithm

- F_{k} : frequent k -itemsets
- L_{k} : candidate k-itemsets
- Algorithm
- Let $\mathrm{k}=1$
- Generate $F_{1}=\{$ frequent 1-itemsets $\}$
- Repeat until F_{k} is empty
- Candidate Generation: Generate L_{k+1} from F_{k}
- Candidate Pruning: Prune candidate itemsets in $\mathrm{L}_{\mathrm{k}+1}$ containing subsets of length k that are infrequent
- Support Counting: Count the support of each candidate in L_{k+1} by scanning the $D B$
- Candidate Elimination: Eliminate candidates in $\mathrm{L}_{\mathrm{k}+1}$ that are infrequent, leaving only those that are frequent $=>F_{k+1}$

Candidate Generation: Brute-Force Method

Figure 6.6. A brute-force method for generating candidate 3 -itemsets.

Candidate Generation: Merge $\mathrm{F}_{\mathrm{k}-1}$ and $\mathrm{F}_{\mathrm{k}-1}$ itemsets

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent $(k-1)$-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Candidate Generation: Merge $\mathrm{F}_{\mathrm{k}-1}$ and $\mathrm{F}_{\mathrm{k}-1}$ itemsets

Figure 6.8. Generating and pruning candidate k-temsets by merging pairs of frequent $(k-1)$-itemsets.

Candidate Generation: Merge F_{k-1} and F_{k-1} itemsets

- Merge two frequent ($k-1$)-itemsets if their first ($k-2$) items are identical
- $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$
- $\operatorname{Merge}(\underline{A B C}, \underline{A B D})=\underline{A B C D}$
- $\operatorname{Merge}(\underline{A B C}, \underline{A B E})=\underline{A B C E}$
- $\operatorname{Merge}(\underline{(A B D}, \underline{A B E})=\underline{A B D E}$
 length 2

Candidate Pruning

- Let $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$ be the set of frequent 3itemsets
- $L_{4}=\{A B C D, A B C E, A B D E\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune $A B C E$ because $A C E$ and BCE are infrequent
- Prune ABDE because ADE is infrequent
- After candidate pruning: $\mathrm{L}_{4}=\{\mathrm{ABCD}\}$

Alternate $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Merge two frequent ($k-1$)-itemsets if the last ($k-2$) items of the first one is identical to the first ($k-2$) items of the second.
- $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$
- Merge $(\mathbf{A B C}, \underline{B C D})=A \underline{B C D}$
- Merge(ABD, BDE) = ABDE
- Merge(ACD, CDE) $=A \underline{C D E}$
- Merge(BCD, $\underline{\text { CDE }})=$ BCDE

Candidate Pruning for Alternate $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Let $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$ be the set of frequent 3itemsets
- $L_{4}=\{A B C D, A B D E, A C D E, B C D E\}$ is the set of candidate 4 -itemsets generated (from previous slide)
- Candidate pruning
- Prune ABDE because ADE is infrequent
- Prune ACDE because ACE and ADE are infrequent
- Prune BCDE because BCE
- After candidate pruning: $L_{4}=\{A B C D\}$

Illustrating Apriori Principle

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

If every subset is considered, ${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$ $6+15+20=41$
With support-based pruning, $6+6+1=13$

Itemset	Count
\{Bread, Diaper, Milk \}	2

Use of $F_{k-1} \times F_{k-1}$ method for candidate generation results in only one 3 -itemset. This is eliminated after the support counting step.

Exercise-1

Transaction 1	Apple, beer, rice, chicken
Transaction 2	Apple, beer, rice
Transaction 3	Apple, beer
Transaction 4	Milk, beer, rice, chicken
Transaction 5	Milk, beer, rice
Transaction 6	Milk, beer

Find all the frequent itemsets where, min_sup $=0.2$

Exercise-2

- Using Apriori algorithm, identify frequent itemsets where min_sup $=2$

Transaction 1	$\mathbf{a , b} \mathbf{b} \mathbf{e}$
Transaction 2	\mathbf{b}, \mathbf{d}
Transaction 3	\mathbf{b}, \mathbf{c}
Transaction 4	$\mathbf{a , b} \mathbf{b} \mathbf{d}$
Transaction 5	$\mathbf{a , \mathbf { c }}$
Transaction 6	\mathbf{b}, \mathbf{c}
Transaction 7	$\mathbf{a , c} \mathbf{c}$
Transaction 8	$\mathbf{a , b}, \mathbf{c}, \mathbf{e}$
Transaction 9	$\mathbf{a , b}, \mathbf{c}$

