
Applied Analytics &
Predictive Modeling

Spring 2021

Lecture-2

Lydia Manikonda

manikl@rpi.edu

Some of the slides adapted from Intro to Data Mining Tan et al. 2nd edition

mailto:kuruzj@rpi.edu

Agenda

• Revision – Intro to Data Mining

• Revision – Python basics – variables, data structures

--

• Python basics – loops, conditionals, functions, packages

• Colab – Jupyter notebook environment

• Research Translation Exercise – for 6000 level only

Why Data Mining? Commercial Viewpoint

• Lots of data is being collected
and warehoused

• Web data
• Yahoo has Peta Bytes of web data

• Facebook has billions of active users

• purchases at department/
grocery stores, e-commerce

• Amazon handles millions of visits/day

• Bank/Credit Card transactions

• Computers have become cheaper and more powerful

• Competitive Pressure is Strong
• Provide better, customized services for an edge (e.g. in Customer Relationship Management)

What is Data Mining?

• Many Definitions
• Non-trivial extraction of implicit, previously unknown and potentially useful

information from data

• Exploration & analysis, by automatic or semi-automatic means, of large
quantities of data in order to discover
meaningful patterns

What is NOT Data Mining?

 What is Data Mining?

– Certain names are more
prevalent in certain US locations
(O’Brien, O’Rourke, O’Reilly… in
Boston area)

– Group together similar
documents returned by search
engine according to their context
(e.g., Amazon rainforest,
Amazon.com)

 What is not Data Mining?

– Look up phone number
in phone directory

– Query a Web search
engine for information
about “Amazon”

Python fundamentals
Basics, loops, conditionals, functions, packages

Basics
Language introduction, setup, variables, data structures

First program in Python

>> #Begins -- Comments

>> print(“Hello World”)

>> #Ends – Comments

is used for single line comment in Python

""" this is a comment """ is used for multi line comments

Variables and Data Structures

• In programming languages such as C, C++ or C#, you need to declare the type
of variables exclusively.

• Data types can be int, float, char, String, etc.

• Python – take a variable and the value assigned to it automatically tells the
data type.

>> myVar = 2 #int

>> print(myVar)

>> myVar2 = 2.5 #float

>> print(myVar2)

>> myVar3 = “Hello World!” #string

>> print(myVar3)

Data Structures

• Create a variable and assign any value you want!

• Python has 4 types of inbuilt data structures

• List

• Dictionary

• Tuple

• Set

List

• Most basic data structure in Python programming language.

• Mutable data structure
• Elements of this list can be altered after creating the data structure

1. append() – used to add elements in the list

2. insert() – used to add elements in the list at a certain index till the
last element

List

append()

>> #Create an empty list
>> list1=[]

>> #Append elements to the list
>> list1.append(2)
>> list1.append(4.5)
>> list1.append(“four”)

>> print(list1)

insert()

>> list1 = [1, 2, 3, 4, 5]

>> list1.insert(5, 10)

>> print(list1)

>> list1.insert(1,10)

>> list1.insert(8,20)

>> print(list1)

Dictionary

• An unordered collection of data values in Python.

• It is used to store data values like a map.

• Unlike other Data Types that hold only single value as an element,
Dictionary holds <key:value> pair.

• Dictionary values can be of any datatype – can be duplicated no
repeated keys.

Dictionary

>> diction1={}

>> print(diction1)

>> diction1 = {1: ‘First’, 2: ‘Python’, 3: ‘Dictionary’}

>> print(diction1)

>> diction1 = {1: ‘First’, 2: [1,2,3,4]}

>> print(diction1)

Dictionary

>> diction1={}

>> diction1[0]=2

>> diction1[1]=4

>> diction1[2]=“Hello”

>> diction1[“3”]=“It is possible”

Tuple

• Tuple is a collection of Python objects much like a list.

• The sequence of values stored in a tuple can be of any type, and they
are indexed by integers.

• The important difference between a list and a tuple is that tuples are
immutable.

Tuple

>> tuple1=()

>> print(tuple1)

>> tuple1=(1,2,3,4,5)

>> print(tuple1)

>> tuple1=(‘hello’, ‘world’)

>> print(tuple1)

Tuple

>> list1=[1,2,3,4,5]

>> list1[1]=3

>> print(list1)

>> list1=[7,6,5,4,3,2,1,0]

>> print(list1)

>> mytuple=(0,1,2,3,4,5,6,7)

>> print(mytuple)
>> mytuple[1]=3

Concatenate tuples
>> Tuple1 = (0, 1, 2, 3)
>> Tuple2 = (‘hello’, ‘world’)
>> Tuple3 = Tuple1 + Tuple2
>> print(Tuple3)

Set

• Set is an unordered collection of data type that is iterable, mutable
and has no duplicate elements.

• Highly optimized method compared to list because it is very easy to
check whether an element is present or not.

Set

>> set1 = set()

>> print(set1)

>> set1 = set(“Predictive”)

>> print(set1)

>> s1=“Predictive”

>> set1 = set(s1)

>> print(set1)

>> set1=set([“I”, “love”, “analytics”])

>> print(set1)

Take input from the user

• input() function is used to take input from the user

>> # Python program to get input from user

>> name = input("Enter the course name: ")

>> # user entered the name ‘PredictiveModel'
>> print("I registered for ", name)

Loops

Loops in Python

For

for iterator_var in sequence:
statements(s)

While

while expression:
statement(s)

for

Geeksforgeeks.org

for

>> print("List Iteration")

>> list1 = [“hello", “world”]

>> for i in list1:

print(i)

>> for i in range(0,10,1):

print(i)

>> for letter in ‘predictiveanalytics':
if letter == 'e' or letter == 's':

continue
print('Current Letter :', letter)

for loop -- Example

Given a list l1= [1,2,3,4,5,6,7,8,9,10], print only the even number
indices using a for loop.

while

while

>> count = 0

>> while (count < 3):

count = count + 1

print("Hello world!")

While

>> i = 0

>> a = ‘predictiveanalytics'

>> while i < len(a):

if a[i] == 'e' or a[i] == 's':
i += 1
continue

print('Current Letter :', a[i])
i += 1

while loop – Example

Given a list l1= [1,2,3,4,5,6,7,8,9,10], print only the numbers at the odd
indices using a while loop.

Conditionals

if-else-if

>> num1 = 4

>> if(num1%2 == 0):

print("Num1 is even")

>> elif(num1%2==1):

print("Num1 is odd")

>> else:

print(“It never prints these statements")

Functions

Functions

• Set of statements that take inputs and perform certain computations

>> def FindEven(x):

if (x % 2 == 0):
print "even"

else:
print "odd"

>> FindEven (2)

>> FindEven (3)

Lambda Functions – Anonymous functions

• lambda arguments: expression

>> def cube(y):
return y*y*y;

>> g = lambda x: x*x*x

>> print(g(7))
>> print(cube(5))

Functions examples

1. Write a function Square that takes an integer argument and outputs
the square value of this argument. For example, if the input is 3,
output should be 9.

2. y = 8
z = lambda x : x * y
print z(6)

Revising all the concepts – Exercises

1. Given a list of keywords, create a dictionary of the keywords and
their frequencies as the values.

Input: Keywords = [‘hello’, ‘I’, ‘am’, ‘fine’, ‘but’, ‘fine’, ‘is’, ‘fine’, ’hello’, ‘to’, ‘you’,
‘fine’]

Dictionary: {‘hello’: 2, ‘I’:1, ‘am’:1, ‘fine’:4, ‘but’:1, ‘is’:1, ‘to’:1, ‘you’:1 }

Packages
3 different packages that we will use in this class

Packages – Numpy
Numerical computations

Packages – Pandas
Data handling

Research Translation Exercise

• For 6000 level ONLY
• Due: 02/04/2021 11:59 pm ET via Blackboard
• No late submissions are allowed

• Choose one visualization of your choice:
https://github.com/d3/d3/wiki/Gallery (code is available on this site to modify/use with
your own dataset)

• Write a 1-page summary on this visualization. This should include:
• Assess the visualization based on the data set and the motivation for that visual

representation.
• What are the technical aspects that you appreciate?
• What would you like to change or add?
• Any other significant technical aspects that you can think of?

https://github.com/d3/d3/wiki/Gallery

