Applied Analytics and Predictive Modeling Spring 2021
 Lecture-5

Lydia Manikonda manikl@rpi.edu

Today's agenda

- Case Study-1
- Data Quality

Case Study-1

- Due: February $18^{\text {th }} 2021,11: 59$ pm ET via LMS
- Olympics dataset
- Different dynamics and insights about Olympics using this data
- 4 teams will present in-class
- Every team will submit a report (max 8 pages including visualizations)

Data Quality

- Poor data quality negatively affects many data processing efforts
"The most important point is that poor data quality is an unfolding disaster.
- Poor data quality costs the typical company at least ten percent (10\%) of revenue; twenty percent (20\%) is probably a better estimate."

Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
- Some credit-worthy candidates are denied loans
- More loans are given to individuals that default

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
- Noise and outliers
- Missing values
- Duplicate data
- Wrong data

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
- Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
- Case 1: Outliers are noise that interferes with data analysis
- Case 2: Outliers are the goal of our analysis
- Credit card fraud
- Intrusion detection
- Causes?

Missing Values

- Reasons for missing values
- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
- Eliminate data objects or variables
- Estimate missing values
- Example: time series of temperature
- Example: census results
- Ignore the missing value during analysis

Missing Values ...

- Missing completely at random (MCAR)
- Missingness of a value is independent of attributes
- Fill in values based on the attribute
- Analysis may be unbiased overall
- Missing at Random (MAR)
- Missingness is related to other variables
- Fill in values based on other values
- Almost always produces a bias in the analysis
- Missing Not at Random (MNAR)
- Missingness is related to unobserved measurements
- Informative or non-ignorable missingness
- Not possible to know the situation from the data

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
- Major issue when merging data from heterogeneous sources
- Examples:
- Same person with multiple email addresses
- Data cleaning
- Process of dealing with duplicate data issues
-When should duplicate data not be removed?

Similarity and Dissimilarity Measures

- Similarity measure
- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range $[0,1]$
- Dissimilarity measure
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute Type	Dissimilarity	Similarity
Nominal	$d= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}$	$s= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}$
Ordinal	$d=\|x-y\| /(n-1)$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s=1-d$
Interval or Ratio	$d=\|x-y\|$	$s=-d, s=\frac{1}{1+d}, s=e^{-d}$, $s=1-\frac{d-m i n-d}{\operatorname{max-}-m_{-} \text {min_d }}$

Euclidean Distance

- Euclidean Distance

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2}}
$$

where n is the number of dimensions (attributes) and x_{k} and y_{k} are, respectively, the $k^{\text {th }}$ attributes (components) or data objects \mathbf{x} and \mathbf{y}.

- Standardization is necessary, if scales differ.

Euclidean Distance

$\mathbf{p o i n t}$	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

- Minkowski Distance is a generalization of Euclidean Distance

$$
d(\mathbf{x}, \mathbf{y})=\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{r}\right)^{1 / r}
$$

Where r is a parameter, n is the number of dimensions (attributes) and x_{k} and y_{k} are, respectively, the $k^{\text {th }}$ attributes (components) or data objects \boldsymbol{x} and \boldsymbol{y}.

Minkowski Distance: Examples

- $r=1$. City block (Manhattan, taxicab, L_{1} norm) distance.
- A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- $r=2$. Euclidean distance
- $r \rightarrow \infty$. "supremum" ($\mathrm{L}_{\text {max }}$ norm, L_{∞} norm) distance.
- This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

$\mathbf{L 1}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	4	4	6
$\mathbf{p 2}$	4	0	2	4
$\mathbf{p 3}$	4	2	0	2
$\mathbf{p 4}$	6	4	2	0

$\mathbf{L 2}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	p3	p4
$\mathbf{p 1}$	0	2	3	5
$\mathbf{p 2}$	2	0	1	3
$\mathbf{p 3}$	3	1	0	2
$\mathbf{p 4}$	5	3	2	0

Distance Matrix

Mahalanobis Distance

 mahalanobis $(\mathbf{x}, \mathbf{y})=(\mathbf{x}-\mathbf{y})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{y})$
Σ is the covariance matrix

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance

Covariance

 Matrix:$$
\Sigma=\left[\begin{array}{ll}
0.3 & 0.2 \\
0.2 & 0.3
\end{array}\right]
$$

A: $(0.5,0.5)$
B: $(0,1)$
C: $(1.5,1.5)$

Mahal $(A, B)=5$
Mahal $(A, C)=4$

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.

1. $\quad d(\mathbf{x}, \mathbf{y}) \geq 0$ for all x and y and $d(\mathbf{x}, \mathbf{y})=0$ only if $\mathbf{x}=\mathbf{y}$. (Positive definiteness)
2. $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y}. (Symmetry)
3. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y}, and \mathbf{z}.
(Triangle Inequality)
where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y}.

- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.

1. $s(\mathbf{x}, \mathbf{y})=1$ (or maximum similarity) only if $\mathbf{x}=\mathbf{y}$.
2. $s(\mathbf{x}, \mathbf{y})=s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y}. (Symmetry)
where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and y .

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities
$f_{01}=$ the number of attributes where p was 0 and q was 1
$f_{10}=$ the number of attributes where p was 1 and q was 0
$f_{00}=$ the number of attributes where p was 0 and q was 0
$f_{11}=$ the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

SMC = number of matches $/$ number of attributes

$$
=\left(f_{11}+f_{00}\right) /\left(f_{01}+f_{10}+f_{11}+f_{00}\right)
$$

$\mathrm{J}=$ number of 11 matches $/$ number of non-zero attributes

$$
=\left(f_{11}\right) /\left(f_{01}+f_{10}+f_{11}\right)
$$

SMC versus Jaccard: Example

$$
\begin{aligned}
& \mathbf{x}=10000000000 \\
& \mathbf{y}=\begin{array}{l}
10000001001
\end{array}
\end{aligned}
$$

$f_{01}=2$ (the number of attributes where p was 0 and q was 1)
$f_{10}=1$ (the number of attributes where p was 1 and q was 0)
$f_{00}=7$ (the number of attributes where p was 0 and q was 0)
$f_{11}=0 \quad$ (the number of attributes where p was 1 and q was 1)

$$
\begin{aligned}
\mathrm{SMC} & =\left(f_{11}+f_{00}\right) /\left(f_{01}+f_{10}+f_{11}+f_{00}\right) \\
& =(0+7) /(2+1+0+7)=0.7 \\
\mathrm{~J}=\left(f_{11}\right) & /\left(f_{01}+f_{10}+f_{11}\right)=0 /(2+1+0)=0
\end{aligned}
$$

Cosine Similarity

- If \mathbf{d}_{1} and \mathbf{d}_{2} are two document vectors, then

$$
\cos \left(\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}\right)=\left\langle\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}\right\rangle /\left\|\mathbf{d}_{1}\right\|\left\|\mathbf{d}_{2}\right\|,
$$

where $\left\langle\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}\right\rangle$ indicates inner product or vector dot product of vectors, $\mathbf{d}_{\mathbf{1}}$ and $\mathbf{d}_{\mathbf{2}}$, and $\|\mathbf{d}\|$ is the length of vector \mathbf{d}.

- Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& \mathrm{~d}_{2}=1000000102 \\
& \left\langle\mathbf{d}_{\mathbf{1}}, \mathbf{d} 2\right\rangle=3 * 1+2 * 0+0 * 0+5 * 0+0 * 0+0 * 0+0 * 0+2 * 1+0 * 0+0 * 2=5 \\
& \left|\mathbf{d}_{\mathbf{1}}\right| \mid=(3 * 3+2 * 2+0 * 0+5 * 5+0 * 0+0 * 0+0 * 0+2 * 2+0 * 0+0 * 0)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|\mathbf{d}_{2}\right\|=(1 * 1+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+0 * 0+1 * 1+0 * 0+2 * 2)^{0.5}=(6)^{0.5}=2.449 \\
& \cos \left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=0.3150
\end{aligned}
$$

Correlation measures the linear relationship between objects

$$
\operatorname{corr}(\mathbf{x}, \mathbf{y})=\frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\text { standard_deviation }(\mathbf{x}) * \text { standard_deviation }(\mathbf{y})}=\frac{s_{x y}}{s_{x} s_{y}}
$$

where we are using the following standard statistical notation and definitions

$$
\begin{align*}
\operatorname{covariance}(\mathbf{x}, \mathbf{y})=s_{x y} & =\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right) \\
\text { standard_deviation }(\mathbf{x}) & =s_{x}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}} \\
\operatorname{standard_ deviation}(\mathbf{y}) & =s_{y}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{k}-\bar{y}\right)^{2}}
\end{align*}
$$

$$
\bar{x}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \text { is the mean of } \mathbf{x}
$$

$$
\bar{y}=\frac{1}{n} \sum_{k=1}^{n} y_{k} \text { is the mean of } \mathbf{y}
$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1 .

Information Based Measures

- Information theory is a well-developed and fundamental disciple with broad applications
- Some similarity measures are based on information theory
- Mutual information in various versions
- Maximal Information Coefficient (MIC) and related measures
- General and can handle non-linear relationships
- Can be complicated and time intensive to compute

Information and Probability

- Information relates to possible outcomes of an event
- transmission of a message, flip of a coin, or measurement of a piece of data
- The more certain an outcome, the less information that it contains and vice-versa
- For example, if a coin has two heads, then an outcome of heads provides no information
- More quantitatively, the information is related the probability of an outcome
- The smaller the probability of an outcome, the more information it provides and viceversa
- Entropy is the commonly used measure

Entropy

- For
- a variable (event), X,
- with n possible values (outcomes), $x_{1}, x_{2} \ldots, x_{n}$
- each outcome having probability, $p_{1}, p_{2} \ldots, p_{n}$
- the entropy of $X, H(X)$, is given by

$$
H(X)=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- Entropy is between 0 and $\log _{2} n$ and is measured in bits
- Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

- For a coin with probability p of heads and probability $q=1-p$ of tails

$$
H=-p \log _{2} p-q \log _{2} q
$$

- For $p=0.5, q=0.5$ (fair coin) $H=1$
- For $p=1$ or $q=1, H=0$
- What is the entropy of a fair four-sided die ?

Entropy for Sample Data: Example

Hair Color	Count	\boldsymbol{p}	$-\boldsymbol{p \operatorname { l o g } _ { 2 } p}$
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Entropy for Sample Data

- Suppose we have
- a number of observations (m) of some attribute, X, e.g., the gpa (assuming rounded values) of students in the class,
- where there are n different possible values
- And the number of observation in the $i^{\text {th }}$ category is m_{i}
- Then, for this sample

$$
H(X)=-\sum_{i=1}^{n} \frac{m_{i}}{m} \log _{2} \frac{m_{i}}{m}
$$

- For continuous data, the calculation is harder

Mutual Information

- Information one variable provides about another

Formally, $I(X, Y)=H(X)+H(Y)-H(X, Y)$, where
$H(X, Y)$ is the joint entropy of X and Y,

$$
H(X, Y)=-\sum_{i} \sum_{j} p_{i j} \log _{2} p_{i j}
$$

Where $p_{i j}$ is the probability that the $i^{\text {th }}$ value of X and the $j^{\text {th }}$ value of Y occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is $\log _{2}\left(\min \left(n_{X}, n_{Y}\right)\right.$, where $n_{X}\left(n_{Y}\right)$ is the number of values of $X(Y)$

Mutual Information Example

Student Status	Count	\boldsymbol{p}	$\boldsymbol{- p} \log _{2} \boldsymbol{p}$
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	\boldsymbol{p}	$\boldsymbol{-} \boldsymbol{p} \log _{2} \boldsymbol{p}$
A	35	0.35	0.5301
B	50	0.50	0.5000
C	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	\boldsymbol{p}	$\boldsymbol{- p} \log _{2} \boldsymbol{p}$
Undergrad	A	5	0.05	0.2161
Undergrad	B	30	0.30	0.5211
Undergrad	C	10	0.10	0.3322
Grad	A	30	0.30	0.5211
Grad	B	20	0.20	0.4644
Grad	C	5	0.05	0.2161
Total		100	1.00	2.2710

Mutual information of Student Status and Grade $=0.9928+1.4406-2.2710=0.1624$

Density

- Measures the degree to which data objects are close to each other in a specified area
- The notion of density is closely related to that of proximity
- Concept of density is typically used for clustering and anomaly detection
- Examples:
- Euclidean density
- Euclidean density = number of points per unit volume
- Probability density
- Estimate what the distribution of the data looks like
- Graph-based density
- Connectivity

Euclidean Density: Grid-based Approach

- Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as \# of points the cell contains

Grid-based density.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Counts for each cell.

Euclidean Density: Center-Based

- Euclidean density is the number of points within a specified radius of the point

Illustration of center-based density.

