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Today’s agenda

* Case Study-1
e Data Quality



Case Study-1

* Due: February 18t 2021, 11:59 pm ET via LMS
* Olympics dataset

 Different dynamics and insights about Olympics using this data

* 4 teams will present in-class
* Every team will submit a report (max 8 pages including visualizations)

Image source: Wikipedia



Data Quality

* Poor data quality negatively affects many data processing efforts

“The most important point is that poor data quality is an unfolding disaster.
 Poor data quality costs the typical company at least ten percent (10%) of
revenue; twenty percent (20%) 1s probably a better estimate.”

Thomas C. Redman, DM Review, August 2004

* Data mining example: a classification model for detecting people who are loan
risks is built using poor data

* Some credit-worthy candidates are denied loans
* More loans are given to individuals that default



Data Quality ...

* What kinds of data quality problems?
* How can we detect problems with the data?
 What can we do about these problems?

* Examples of data quality problems:
* Noise and outliers
* Missing values
* Duplicate data
* Wrong data



Noise

* For objects, noise is an extraneous object

* For attributes, noise refers to modification of original values

. Examples distortion of a person’s voice when talking on a poor phone and
“snow” on television screen
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Outliers

* Outliers are data objects with characteristics that are considerably
different than most of the other data objects in the data set

e Case 1: Qutliers are
noise that interferes

with data analysis S
. ® g *
* Case 2: Outliers are e
the goal of our analysis AR
- Credit card fraud &

* |ntrusion detection

e Causes?



Missing Values

e Reasons for missing values

* Information is not collected
(e.g., people decline to give their age and weight)

* Attributes may not be applicable to all cases
(e.g., annual income is not applicable to children)

* Handling missing values
* Eliminate data objects or variables

e Estimate missing values
* Example: time series of temperature
* Example: census results

* Ignore the missing value during analysis



Missing Values ...

* Missing completely at random (MCAR)
* Missingness of a value is independent of attributes
* Fill in values based on the attribute
* Analysis may be unbiased overall

* Missing at Random (MAR)

* Missingness is related to other variables
* Fill in values based on other values
* Almost always produces a bias in the analysis

* Missing Not at Random (MNAR)

* Missingness is related to unobserved measurements
* Informative or non-ignorable missingness

* Not possible to know the situation from the data



Duplicate Data

e Data set may include data objects that are duplicates, or almost
duplicates of one another

* Major issue when merging data from heterogeneous sources

* Examples:
* Same person with multiple email addresses

* Data cleaning
* Process of dealing with duplicate data issues

 When should duplicate data not be removed?



Similarity and Dissimilarity Measures

e Similarity measure
 Numerical measure of how alike two data objects are.
* |s higher when objects are more alike.
e Often falls in the range [0,1]

e Dissimilarity measure
 Numerical measure of how different two data objects are
* Lower when objects are more alike
* Minimum dissimilarity is often O
* Upper limit varies

* Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity
between two objects, x and y, with respect to a single, simple

attribute.
Attribute Dissimilarity Similarity
Type
_ 0 =y 1 =y
Nominal d—{l if 7 £y S_{O if © £y
d=lr—y|l/(n—1)
Ordinal (values mapped to integersOton—1, | s=1—d
where n is the number of values)
Interval or Ratio | d = |z — y| §s=—d,s= rlda s=e 7
L d—min_d
s =1- max_d—min_d




Euclidean Distance

 Euclidean Distance

d(x,y) = \ > (xk — yi)?

where n is the number of dimensions (attributes) and x, and y, are,
respectively, the k" attributes (components) or data objects X and y.

e Standardization is necessary, if scales differ.



Fuclidean Distance
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Minkowski Distance

* Minkowski Distance is a generalization of Euclidean Distance

n 1/r
d(x,y) = (Z 2y — ykIT)

k=1

Where r is a parameter, n is the number of dimensions
(attributes) and X, and y, are, respectively, the k" attributes
(components) or data objects X and .



Minkowski Distance: Examples

* r=1. City block (Manhattan, taxicab, L, norm) distance.

A common example of this is the Hamming distance, which is just the number
of bits that are different between two binary vectors

e r=2. Euclidean distance

* r—oo. “supremum” (L__ norm, L_norm) distance.
* This is the maximum difference between any component of the vectors

Do not confuse r with n, i.e., all these distances are defined for all
numbers of dimensions.



Minkowski Distance
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Mahalanobis Distance

—-y)

“1(x

mahalanobis(x,y) = (x —y)! 2

x
—
)

©

&

()]

o

-

©
-

©
>

o

o

()
<
o
D
N

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.



Mahalanobis Distance

Covariance
X Matri_x: )
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Common Properties of a Distance

 Distances, such as the Euclidean distance, have some well known
properties.

1. d(x,y)=>0 forallxandyandd(x,y)=0onlyif
X =Y. (Positive definiteness)

2. d(x,y)=d(y,x) forallxandy. (Symmetry)

3. d(X,z)<d(x,y) +d(y,z) forallpointsX,y, and z.
(Triangle Inequality)

where d(X, y) is the distance (dissimilarity) between points (data objects), X
andy.

 Adistance that satisfies these properties is a metric



Common Properties of a Similarity

* Similarities, also have some well known properties.

1. s(X,y) =1 (or maximum similarity) only if X = y.
2. s(X,y)=s(y, xX) forall xandy. (Symmetry)

where S(X, V) is the similarity between points (data objects), X and

Y.



Similarity Between Binary Vectors

« Common situation is that objects, p and g, have only binary attributes

e Compute similarities using the following quantities
fo; = the number of attributes where p was 0 and g was 1
f;, = the number of attributes where p was 1 and g was 0
foo = the number of attributes where p was 0 and g was 0
f;; = the number of attributes where p was 1 and g was 1

 Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes

= (fyy + Too) / (for + fyo + frq + 1)

J = number of 11 matches / number of non-zero attributes
= (fll) / (f01 + flO t f11)



SMC versus Jaccard: Example

x=1000000000
y=0000001001

fo; =2 (the number of attributes where p was 0 and q was 1)
f,o=1 (the number of attributes where p was 1 and q was 0)
foo =7 (the number of attributes where p was 0 and q was 0)
f,; =0 (the number of attributes where p was 1 and q was 1)

SMC = (fyy +fqo) / (for + f1o + f1q + 1)
= (0+7) / (2+1+0+7) = 0.7

J=(f1) [ (foy +To+113) =0/(2+1+0)=0



Cosine Similarity

* If d; and d, are two document vectors, then

cos(d,, d,)= <d,d,>/||d,] ||d,l,
where <d,,d,> indicates inner product or vector dot product of vectors, d, and d,
and || d || is the length of vector d.

® Example:

d,=3205000200

d,=1000000102
<d, d2>= 3*1+2*0+0*0+5*0+0*0+0*0+0*0 + 2*1 + 0*0 + 0*2 =5
| d; || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)%° = (42) %°> = 6.481
| d, || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2.449
cos(d,, d, ) =0.3150



Correlation measures the linear relationship
between objects

covariance(x,y)

— 2 (211

corr(x =
(x,¥) standard_deviation(x) * standard_deviation(y)  s. sy

where we are using the following standard statistical notation and definitions

1 mn
covariance(x,y) = Sy = —— Z(a?k —T)(yr —7) (2.12
n—1 k=1

1 (23

standard_deviation(x) = s, = T — T)2
\ n—1&

1 n r

standard_deviation(y) = s, = \ ] Z(yk —7)?
T k=1

T

_ 1 .
T = — E x 1s the mean of x
n
k=1
T
_ 1 .
y = — E yi is the mean of y
mn

k=1



Visually Evaluating Correlation
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Information Based Measures

* Information theory is a well-developed and fundamental disciple with
broad applications

* Some similarity measures are based on information theory
* Mutual information in various versions
* Maximal Information Coefficient (MIC) and related measures
* General and can handle non-linear relationships
* Can be complicated and time intensive to compute



Information and Probability

* Information relates to possible outcomes of an event
* transmission of a message, flip of a coin, or measurement of a piece of data

* The more certain an outcome, the less information that it contains
and vice-versa

* For example, if a coin has two heads, then an outcome of heads provides no
information
* More quantitatively, the information is related the probability of an outcome

 The smaller the probability of an outcome, the more information it provides and vice-
versa

* Entropy is the commonly used measure



Entropy

* For
* avariable (event), X,
* with n possible values (outcomes), X, X, ..., X,
* each outcome having probability, p;, P, -.., Py,
* the entropy of X, H(X), is given by

n
H(X) = —Z pilog, p;
im1

* Entropy is between 0 and log,n and is measured in bits

* Thus, entropy is a measure of how many bits it takes to represent an observation of
X on average



Entropy Examples

* For a coin with probability p of heads and probability g = 1 — p of tails

H=—-plog,p—qlog,q

* Forp=0.5,q9=0.5(faircoin)H=1
e Forp=1lorq=1,H=0

* What is the entropy of a fair four-sided die ?



Entropy for Sample Data: Example

Black 0.3113
Brown 15 0.15 0.4105
Blond 5 0.05 0.2161
Red 0 0.00 0

Other 5 0.05 0.2161

Total 100 1.0 1.1540



Entropy for Sample Data

e Suppose we have

* a number of observations (M) of some attribute, X, e.g., the gpa (assuming
rounded values) of students in the class,

* where there are n different possible values
 And the number of observation in the it" category is m.
* Then, for this sample

HX) = Z—logz

* For continuous data, the calculation is harder



Mutual Information

* Information one variable provides about another

Formally, I(X,Y) = H(X) + H(Y) — H(X,Y), where

H(X,Y) is the joint entropy of X and Y,

H(X,Y)=— z z D108z by
j

i

Where pj; is the probability that the ith value of X and the j*" value of Y occur together
* For discrete variables, this is easy to compute

« Maximum mutual information for discrete variables is
log,(min( ny, ny ), where ny (ny) is the number of values of X (Y)



Mutual Information Example

Student | Count -plog,p
Status

Student
Status
Undergrad 45 0.4 0.5184
Und d A 5 0.05 0.2161
Grad 55 055 0.4744 TR
Total 100 1.00 0.9928 Undergrad B 30 0.30 0.5211
Undergrad C 10 0.10 0.3322
Count |p | -plogp |
m- plog,p T — 1
0.35 0.5301
Grad B 20 0.20 0.4644
B 50 0.50 0.5000
Grad C 5 0.05 0.2161
C 15 0.15 0.4105
Total 100 1.00  1.4406 Total 100 1.00 2.2710

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 =0.1624



Density

Measures the degree to which data objects are close to each other in a specified
area

The notion of density is closely related to that of proximity
Concept of density is typically used for clustering and anomaly detection

Examples:
* Euclidean density
* Euclidean density = number of points per unit volume
* Probability density
* Estimate what the distribution of the data looks like
* Graph-based density
* Connectivity



Euclidean Density: Grid-based Approach

e Simplest approach is to divide region into a number of rectangular
cells of equal volume and define density as # of points the cell
contains?
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Euclidean Density: Center-Based

* Euclidean density is the number of points within a specified radius of
the point
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lllustration of center-based density.



