Applied Analytics and Predictive Modeling Spring 2021

Lecture-5

Lydia Manikonda

manikl@rpi.edu

Some of the slides adapted from Intro to Data Mining Tan et al. 2nd edition

Today's agenda

- Case Study-1
- Data Quality

Case Study-1

- Due: February 18th 2021, 11:59 pm ET via LMS
- Olympics dataset
- Different dynamics and insights about Olympics using this data
- 4 teams will present in-class
- Every team will submit a report (max 8 pages including visualizations)

Data Quality

- Poor data quality negatively affects many data processing efforts
- "The most important point is that poor data quality is an unfolding disaster.
 - Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate."

Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Missing values
 - Duplicate data
 - Wrong data

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves + Noise

Outliers

- **Outliers** are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - **Case 1:** Outliers are noise that interferes with data analysis
 - **Case 2:** Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

• Causes?

Missing Values

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects or variables
 - Estimate missing values
 - Example: time series of temperature
 - Example: census results
 - Ignore the missing value during analysis

Missing Values ...

- Missing completely at random (MCAR)
 - Missingness of a value is independent of attributes
 - Fill in values based on the attribute
 - Analysis may be unbiased overall
- Missing at Random (MAR)
 - Missingness is related to other variables
 - Fill in values based on other values
 - Almost always produces a bias in the analysis
- Missing Not at Random (MNAR)
 - Missingness is related to unobserved measurements
 - Informative or non-ignorable missingness
- Not possible to know the situation from the data

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

Similarity and Dissimilarity Measures

- Similarity measure
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, *x* and *y*, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, \ s = \frac{1}{1+d}, \ s = e^{-d},$ $s = 1 - \frac{d - \min d}{\max d - \min d}$

Euclidean Distance

• Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects *x* and *y*.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- *r* = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
\mathbf{L}_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

point	X	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Distance Matrix

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$. (Positive definiteness)
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

• A distance that satisfies these properties is a metric

Common Properties of a Similarity

• Similarities, also have some well known properties.

1. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$.

2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities f_{01} = the number of attributes where p was 0 and q was 1 f_{10} = the number of attributes where p was 1 and q was 0 f_{00} = the number of attributes where p was 0 and q was 0 f_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients
 - SMC = number of matches / number of attributes

 $= (f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$

J = number of 11 matches / number of non-zero attributes = $(f_{11}) / (f_{01} + f_{10} + f_{11})$

SMC versus Jaccard: Example

 $\mathbf{x} = 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $\mathbf{y} = 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1$

 $f_{01} = 2$ (the number of attributes where *p* was 0 and *q* was 1) $f_{10} = 1$ (the number of attributes where *p* was 1 and *q* was 0) $f_{00} = 7$ (the number of attributes where *p* was 0 and *q* was 0) $f_{11} = 0$ (the number of attributes where *p* was 1 and *q* was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$\mathbf{J} = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

• If \mathbf{d}_1 and \mathbf{d}_2 are two document vectors, then $\cos(\mathbf{d}_1, \mathbf{d}_2) = \langle \mathbf{d}_1, \mathbf{d}_2 \rangle / ||\mathbf{d}_1|| ||\mathbf{d}_2||$, where $\langle \mathbf{d}_1, \mathbf{d}_2 \rangle$ indicates inner product or vector dot product of vectors, \mathbf{d}_1 and \mathbf{d}_2 , and $||\mathbf{d}||$ is the length of vector \mathbf{d} .

• Example:

 $d_1 = 3205000200$ $d_2 = 100000102$

Correlation measures the linear relationship between objects

 $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y}, \quad (2.11)$

where we are using the following standard statistical notation and definitions

covariance
$$(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$
 (2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2}$
standard_deviation(\mathbf{y}) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (y_k - \overline{y})^2}$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$
$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Information Based Measures

- Information theory is a well-developed and fundamental disciple with broad applications
- Some similarity measures are based on information theory
 - Mutual information in various versions
 - Maximal Information Coefficient (MIC) and related measures
 - General and can handle non-linear relationships
 - Can be complicated and time intensive to compute

Information and Probability

- Information relates to possible outcomes of an event
 - transmission of a message, flip of a coin, or measurement of a piece of data
- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and viceversa
 - Entropy is the commonly used measure

Entropy

- For
 - a variable (event), X,
 - with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
 - each outcome having probability, $p_1, p_2 \dots, p_n$
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and $\log_2 n$ and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

• For
$$p = 0.5$$
, $q = 0.5$ (fair coin) $H = 1$

• For
$$p = 1$$
 or $q = 1$, $H = 0$

• What is the entropy of a fair four-sided die ?

Entropy for Sample Data: Example

Hair Color	Count	p	<i>-p</i> log ₂ <i>p</i>
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Entropy for Sample Data

- Suppose we have
 - a number of observations (*m*) of some attribute, *X*, e.g., the gpa (assuming rounded values) of students in the class,
 - where there are *n* different possible values
 - And the number of observation in the i^{th} category is m_i
 - Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

• For continuous data, the calculation is harder

Mutual Information

• Information one variable provides about another

Formally, I(X, Y) = H(X) + H(Y) - H(X, Y), where

H(X, Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i}\sum_{j}p_{ij}\log_2 p_{ij}$$

Where p_{ij} is the probability that the *i*th value of X and the *j*th value of Y occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is log₂(min(n_X, n_Y), where n_X (n_Y) is the number of values of X (Y)

Mutual Information Example

Student Status	Count	р	<i>-p</i> log ₂ <i>p</i>
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	p	-plog ₂ p
А	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	р	-plog ₂ p
Undergrad	А	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	А	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	2.2710

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

Density

- Measures the degree to which data objects are close to each other in a specified area
- The notion of density is closely related to that of proximity
- Concept of density is typically used for clustering and anomaly detection
- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Estimate what the distribution of the data looks like
 - Graph-based density
 - Connectivity

Euclidean Density: Grid-based Approach

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains_

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Counts for each cell.

Euclidean Density: Center-Based

 Euclidean density is the number of points within a specified radius of the point

Illustration of center-based density.