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Today’s agenda

• Data Quality contd..

• Eigenvalues and eigenvectors

• Principal Component Analysis



Data Quality …

• What kinds of data quality problems?

• How can we detect problems with the data? 

• What can we do about these problems? 

• Examples of data quality problems: 
• Noise and outliers 

• Missing values 

• Duplicate data 

• Wrong data



Information Based Measures

• Information theory is a well-developed and fundamental disciple with 
broad applications

• Some similarity measures are based on information theory 
• Mutual information in various versions

• Maximal Information Coefficient (MIC) and related measures

• General and can handle non-linear relationships

• Can be complicated and time intensive to compute



Information and Probability

• Information relates to possible outcomes of an event 
• transmission of a message, flip of a coin, or measurement of a piece of data 

• The more certain an outcome, the less information that it contains 
and vice-versa
• For example, if a coin has two heads, then an outcome of heads provides no 

information

• More quantitatively, the information is related the probability of an outcome
• The smaller the probability of an outcome, the more information it provides and vice-

versa

• Entropy is the commonly used measure



Entropy

• For 
• a variable (event), X, 
• with n possible values (outcomes), x1, x2 …, xn

• each outcome having probability, p1, p2 …, pn

• the entropy of X , H(X), is given by

𝐻 𝑋 = −෍

𝑖=1

𝑛

𝑝𝑖log2 𝑝𝑖

• Entropy is between 0 and log2n and is measured in bits
• Thus, entropy is a measure of how many bits it takes to represent an observation of 

X on average



Entropy Examples

• For a coin with probability p of heads and probability q = 1 – p of tails

𝐻 = −𝑝 log2 𝑝 −𝑞 log2 𝑞

• For p= 0.5, q = 0.5 (fair coin) H = 1

• For p = 1 or q = 1, H = 0

• What is the entropy of a fair four-sided die ? 



Entropy for Sample Data: Example

Hair Color Count p -plog2p

Black 75 0.75 0.3113

Brown 15 0.15 0.4105

Blond 5 0.05 0.2161

Red 0 0.00 0

Other 5 0.05 0.2161

Total 100 1.0 1.1540



Entropy for Sample Data

• Suppose we have 
• a number of observations (m) of some attribute, X, e.g., the gpa (assuming 

rounded values) of students in the class, 
• where there are n different possible values
• And the number of observation in the ith category is mi

• Then, for this sample

𝐻 𝑋 = −෍

𝑖=1

𝑛
𝑚𝑖

𝑚
log2

𝑚𝑖

𝑚

• For continuous data, the calculation is harder



Mutual Information

• Information one variable provides about another -- it quantifies the "amount of information" obtained about 
one random variable through observing the other random variable

Formally, 𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌), where

H(X,Y) is the joint entropy of X and Y, 

𝐻 𝑋, 𝑌 = −෍

𝑖

෍

𝑗

𝑝𝑖𝑗log2 𝑝𝑖𝑗

Where pij is the probability that the ith value of X and the jth value of Y occur together 

• For discrete variables, this is easy to compute

• Maximum mutual information for discrete variables is 
log2(min( nX, nY ), where nX (nY) is the number of values of X (Y) 



Mutual Information Example
Student 
Status

Count p -plog2p

Undergrad 45 0.45 0.5184

Grad 55 0.55 0.4744

Total 100 1.00 0.9928

Grade Count p -plog2p

A 35 0.35 0.5301

B 50 0.50 0.5000

C 15 0.15 0.4105

Total 100 1.00 1.4406

Student 
Status

Grade Count p -plog2p

Undergrad A 5 0.05 0.2161

Undergrad B 30 0.30 0.5211

Undergrad C 10 0.10 0.3322

Grad A 30 0.30 0.5211

Grad B 20 0.20 0.4644

Grad C 5 0.05 0.2161

Total 100 1.00 2.2710

Mutual information of Student Status and Grade =  0.9928 + 1.4406 - 2.2710 = 0.1624



Density

• Measures the degree to which data objects are close to each other in a specified 
area

• The notion of density is closely related to that of proximity

• Concept of density is typically used for clustering and anomaly detection

• Examples:
• Euclidean density

• Euclidean density = number of points per unit volume

• Probability density
• Estimate what the distribution of the data looks like

• Graph-based density
• Connectivity



• Simplest approach is to divide region into a number of rectangular 
cells of equal volume and define density as # of points the cell 
contains

Grid-based density. Counts for each cell.

Euclidean Density: Grid-based Approach



Euclidean Density: Center-Based

• Euclidean density is the number of points within a specified radius of 
the point

Illustration of center-based density.



Eigenvalues and Eigenvectors

Picture credits: By TreyGreer62 - Image:Mona Lisa-restored.jpg, CC0, 
https://commons.wikimedia.org/w/index.php?curid=12768508

• In the image on the right, when 
the image is transformed, red
arrow changed the direction. But 
the blue arrow didn’t – this is the 
eigenvector. 

• Eigenvector does not change its 
direction. 



Eigenvalues and Eigenvectors

• Eigenvectors are the characteristic vectors that are nonzero vectors.

• Eigenvalues are the scalar values or factors with which corresponding 
eigenvectors are scaled.

• But how do we compute them? 



Computing eigenvalues and eigenvectors

• We multiply a matrix with a vector and get the same result when we 
multiply a scalar by that vector. 



Example: 
Computing 
eigenvalues and 
eigenvectors



We found 
eigenvalues. 

Now compute 
corresponding 
eigenvectors



Case-1: 
eigenvalue=6



Case-2: 
eigenvalue=-7



Lets case-2’s 
eigenvector and 
multiply with the 
original matrix



Example-2: eigenvalues and eigenvectors 

Matrix is: 

A = 2   2 
5  -1



Principal Component Analysis

• Step-1: Standardization

• Step-2: Compute covariance matrix

• Step-3: Compute the eigenvalues and eigenvectors of the covariance 
matrix

• Step-4: Sort the eigenvalues in a decreasing order

• Step-5: Choose the top-k eigenvectors which are the principal 
components – these will be the transformed feature vectors


