Applied Analytics and Predictive Modeling Spring 2021

Lecture-6

Lydia Manikonda

manikl@rpi.edu

Some of the slides adapted from Intro to Data Mining Tan et al. 2nd edition

Today's agenda

- Data Quality contd..
- Eigenvalues and eigenvectors
- Principal Component Analysis

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Missing values
 - Duplicate data
 - Wrong data

Information Based Measures

- Information theory is a well-developed and fundamental disciple with broad applications
- Some similarity measures are based on information theory
 - Mutual information in various versions
 - Maximal Information Coefficient (MIC) and related measures
 - General and can handle non-linear relationships
 - Can be complicated and time intensive to compute

Information and Probability

- Information relates to possible outcomes of an event
 - transmission of a message, flip of a coin, or measurement of a piece of data
- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and viceversa
 - Entropy is the commonly used measure

Entropy

- For
 - a variable (event), X,
 - with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
 - each outcome having probability, $p_1, p_2 \dots, p_n$
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and $\log_2 n$ and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

• For
$$p = 0.5$$
, $q = 0.5$ (fair coin) $H = 1$

• For
$$p = 1$$
 or $q = 1$, $H = 0$

• What is the entropy of a fair four-sided die ?

Entropy for Sample Data: Example

Hair Color	Count	p	<i>-p</i> log ₂ <i>p</i>
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Entropy for Sample Data

- Suppose we have
 - a number of observations (*m*) of some attribute, *X*, e.g., the gpa (assuming rounded values) of students in the class,
 - where there are *n* different possible values
 - And the number of observation in the i^{th} category is m_i
 - Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

• For continuous data, the calculation is harder

Mutual Information

 Information one variable provides about another -- it quantifies the "amount of information" obtained about one random variable through observing the other random variable

Formally, I(X, Y) = H(X) + H(Y) - H(X, Y), where

H(X, Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

Where p_{ii} is the probability that the i^{th} value of X and the j^{th} value of Y occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is log₂(min(n_X, n_Y), where n_X (n_Y) is the number of values of X (Y)

Mutual Information Example

Student Status	Count	р	<i>-p</i> log ₂ <i>p</i>
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	p	-plog ₂ p
А	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	p	-plog ₂ p
Undergrad	А	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	А	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	2.2710

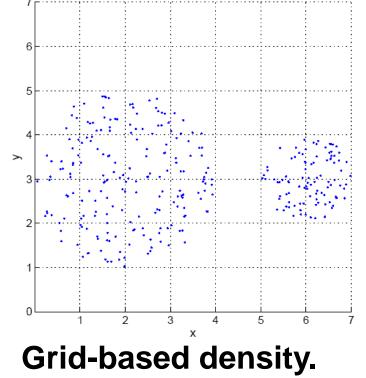
Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

Density

- Measures the degree to which data objects are close to each other in a specified area
- The notion of density is closely related to that of proximity
- Concept of density is typically used for clustering and anomaly detection
- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Estimate what the distribution of the data looks like
 - Graph-based density
 - Connectivity

Euclidean Density: Grid-based Approach

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains_



0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Counts for each cell.

Euclidean Density: Center-Based

 Euclidean density is the number of points within a specified radius of the point

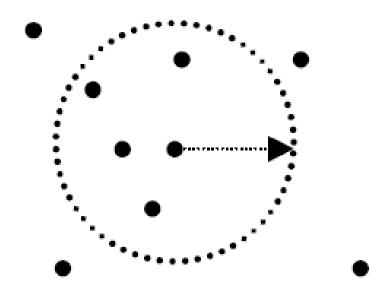
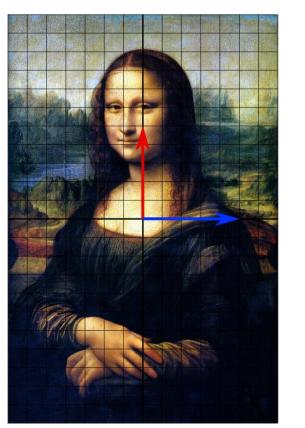
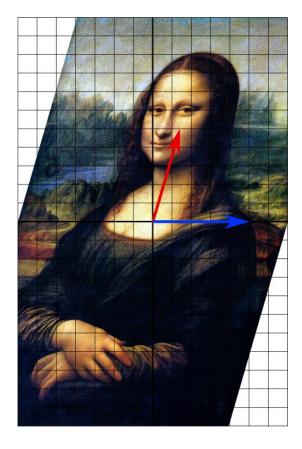


Illustration of center-based density.

Eigenvalues and Eigenvectors

- In the image on the right, when the image is transformed, red arrow changed the direction. But the blue arrow didn't – this is the eigenvector.
- Eigenvector does not change its direction.





Picture credits: By TreyGreer62 - Image:Mona Lisa-restored.jpg, CC0, https://commons.wikimedia.org/w/index.php?curid=12768508

Eigenvalues and Eigenvectors

• Eigenvectors are the characteristic vectors that are nonzero vectors.

- Eigenvalues are the scalar values or **factors** with which corresponding eigenvectors are scaled.
- But how do we compute them?

Computing eigenvalues and eigenvectors

• We multiply a matrix with a vector and get the same result when we multiply a scalar by that vector.

we start by Finding eigenvalue. $AV = \lambda V$ AV = AIV V is the non-zero Cigenvector corresponding to the eigenvalue A. AV - AIV = O $|A - \lambda I| v = 0$

Example: Computing eigenvalues and eigenvectors

If
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, compute eigenvalues and their
corresponding eigenvector.
Shart with: $|A - \lambda T| = 0 \longrightarrow \text{Finding the determinant.}$
 $\left| \begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} -6 -\lambda & 3 - 0 \\ 4 - 0 & 5 - \lambda \end{bmatrix} = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 = 0$
 $\left(-6 - \lambda (5 - \lambda) - (3)(4) = 0 = 0$
 $\left(-30 + 6\lambda - 5\lambda + \lambda^{\gamma} - 12 = 0 = 0$
 $\lambda^{\gamma} + \lambda - 42 = 0$
 $\left(\lambda + T \right) \left(\lambda = 6 \right) = 0$
 $\lambda = -7 \text{ or } 6$.

We found eigenvalues.

Now compute corresponding eigenvectors

If
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, compute eigenvalues and their
corresponding eigenvector.
Start with: $|A - \lambda I| = 0 \quad \longrightarrow$ Finding the detorminant.
 $\left| \begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} -6 - \lambda & 3 - 0 \\ 4 - 0 & 5 - \lambda \end{bmatrix} \right| = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 \quad = 0$
 $\left(-6 - \lambda \right) (5 - \lambda) - (3)(4) = 0 \quad = 3$
 $\left(-6 - \lambda \right) (5 - \lambda) - (3)(4) = 0 \quad = 3$
 $-30 + 6\lambda - 5\lambda + \lambda^{\gamma} - 12 = 0 \quad = 4$
 $\lambda^{\gamma} + \lambda - 42 = 0$
 $\left(\lambda + T \right) \left(\lambda = 6 \right) = 0$
 $\lambda = -7 \quad \text{or} \quad 6$.

Case-1: eigenvalue=6

Case 1:
$$\lambda = 6$$
: $AV = \lambda V$

$$\begin{pmatrix} -6 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} \pi \\ 9 \end{pmatrix} = 6 \begin{pmatrix} \pi \\ 9 \end{pmatrix} \begin{pmatrix} -6\pi + 3y \\ 4x + 5y = 6x \\ 4x + 5y = 6y \end{pmatrix} - 0$$

$$-12x + 3y = 0$$

$$4x - y = 0$$

$$4y$$

$$4x = y \text{ or } y = 4x.$$
So, eigenvector is any non-zero multiple of
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

Case-2: eigenvalue=-7

ane-2:
$$\lambda = -7$$
: $AV = \lambda V$
 $\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (-7) \begin{bmatrix} x \\ y \end{bmatrix}$
Multiplying these matrices:
 $-6x+3y = -7x$ 0
 $4x + 5y = -7y$
 $x + 3y = 0$ 0 .
 $4x + 12y = 0$
 1
 $x = -3y$ or $y = (-\frac{1}{3})x$
 $\begin{bmatrix} -3 \\ 1 \end{bmatrix} \rightarrow$ Gigenvector is any non-serve multiple of this vector.

Lets case-2's eigenvector and multiply with the original matrix

Peplace care-2's eigenvector to multiply with the original matrix.

$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \begin{bmatrix} (-6)(-3) + (3)(1) \\ (4)(-3) + (5)(1) \end{bmatrix}$$

$$= \begin{bmatrix} 18 + 3 \\ -12 + 5 \end{bmatrix} = \begin{bmatrix} 21 \\ -7 \end{bmatrix}$$

$$= \begin{bmatrix} 21 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} 18 + 3 \\ -12 + 5 \end{bmatrix} = \begin{bmatrix} 21 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} 14 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} -7 \\ -3 \\ 1 \end{bmatrix}$$

Example-2: eigenvalues and eigenvectors

Matrix is:

$$A = \left(\begin{array}{cc} 2 & 2 \\ 5 & -1 \end{array}\right)$$

Principal Component Analysis

- Step-1: Standardization
- Step-2: Compute covariance matrix
- Step-3: Compute the eigenvalues and eigenvectors of the covariance matrix
- Step-4: Sort the eigenvalues in a decreasing order
- Step-5: Choose the top-k eigenvectors which are the principal components – these will be the transformed feature vectors