Applied Analytics and Predictive Modeling Spring 2021
 Lecture-8

Lydia Manikonda manikl@rpi.edu

Today's agenda

- Linear regression
- Case Study-2

Linear Regression

Linear Regression

The technique is used to predict the value of one variable (the dependent variable - y) based on the value of other variables (independent variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}}$)

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

Modeling

- The first order linear model

> y $=$ dependent variable
> x $=$ independent variable
> $\beta_{0}=y$-intercept
> $\beta_{1}=$ slope of the line
> $\mathcal{E}=$ error variable

Estimating the coefficients

- The estimates are determined by
- drawing a sample from the population of interest,
- calculating sample statistics.
- producing a straight line that cuts into the data.

The best line is the one that minimizes the sum of squared vertical differences between the points and the line.

Sum of squared differences $=(2-1)^{2}+(4-2)^{2}+(1.5-3)^{2}+(3.2-4)^{2}=6.89$

To calculate the estimates of the coefficients that minimize the differences between the data points and the line, use the formulas:

$$
\begin{aligned}
& b_{1}=\frac{\operatorname{cov}(X, Y)}{s_{x}^{2}} \\
& b_{0}=\bar{y}-b_{1} \bar{x}
\end{aligned}
$$

The regression equation that estimates the equation of the first order linear model is:

$$
\overline{\hat{y}=b_{0}+b_{1} x}
$$

Relationship between odometer reading and a used car's selling price.

- A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
- A random sample of 100 cars is selected, and the data recorded.
- Find the regression line.

Car	Odometer	Price
1	37388	
2	44758	5318
3	45833	5061
4	30862	5795
5	31705	5784
6	34010	5359
.	\cdot	\cdot
.	\cdot	\cdot
.	\cdot	\cdot
Independent variable x		

Dependent variable y
9

Solution to calculate b_{0} and b_{1} we need to calculate several statistics first;

$$
\begin{array}{ll}
\bar{x}=36,009.45 ; & s_{x}^{2}=\frac{\sum\left(x_{i}-x\right)^{2}}{n-1}=43,528,688 \\
\bar{y}=5,411.41 ; & \operatorname{cov}(X, Y)=\frac{\sum\left(x_{i}-x\right)\left(y_{i}-y\right)}{n-1}=-1,356,256
\end{array}
$$

where $\mathrm{n}=100$.
$b_{1}=\frac{\operatorname{cov}(X, Y)}{s_{x}^{2}}=\frac{-1,356,256}{43,528,688}=-.0312$
$b_{0}=\bar{y}-b_{1} \bar{x}=5411.41-(-.0312)(36,009.45)=6,533$
$\hat{y}=b_{0}+b_{1} x=6,533-.0312 x$

Example-1 - Demo

- Go to the excel sheet to plot a linear regression line for this data

Subject	Age	beats per minute
1	43	91
2	31	72
3	25	65
4	42	87
5	57	110
6	59	120

Exercise

- Build a linear regression model for the diamonds_small.csv uploaded on Piazza
- How do we do this in Python - demo

Case Study-2

