Applied Analytics and Predictive Modeling Spring 2021

Lecture-9

Lydia Manikonda

manikl@rpi.edu

Some of the slides adapted from Intro to Data Mining Tan et al. 2nd edition

Today's agenda

- Decision trees
- Class exercises on building a decision tree manually

Decision Trees

Example of a Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Training Data

Another Example of Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Start from the root of tree.

Test Data

			Defaulted Borrower
No	Married	80K	?

Test Data

			Defaulted Borrower
No	Married	80K	?

Test Data

•				Defaulted Borrower
	No	Married	80K	?

Decision Tree Classification Task

Test Set

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of the Hunt's algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

(a)

Defaulted = No

1	h)
l	D)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	20K No	
5	No	Divorced 95K Yes		Yes	
6	No	Married 60K No		No	
7	Yes	Divorced 220K No		No	
8	No	Single	85K	Yes	
9	No	Married 75K No		No	
10	No	Single	90K	Yes	

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	ied 60K No		
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

(C)

(d)

Design Issues of Decision Tree Induction

- How should training **records be split**?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the **splitting procedure stop**?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

- Multi-way split:
 - Use as many partitions as distinct values.

- Binary split:
 - Divides values into two subsets

Test Condition for Ordinal Attributes

- Multi-way split:
 - Use as many partitions as distinct values.

• Binary split:

- Divides values into two subsets
- Preserve order property among attribute values

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Static discretize once at the beginning
 - Dynamic repeat at each node
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Customer Id	Gender	Car Type	Shirt Size	Class
1	М	Family	Small	C0
2	Μ	Sports	Medium	C0
3	Μ	Sports	Medium	C0
4	Μ	Sports	Large	C0
5	Μ	Sports	Extra Large	C0
6	Μ	Sports	Extra Large	C0
7	\mathbf{F}	Sports	Small	C0
8	\mathbf{F}	Sports	Small	C0
9	\mathbf{F}	Sports	Medium	C0
10	\mathbf{F}	Luxury	Large	C0
11	Μ	Family	Large	C1
12	Μ	Family	Extra Large	C1
13	Μ	Family	Medium	C1
14	Μ	Luxury	Extra Large	C1
15	\mathbf{F}	Luxury	Small	C1
16	\mathbf{F}	Luxury	Small	C1
17	\mathbf{F}	Luxury	Medium	C1
18	\mathbf{F}	Luxury	Medium	C1
19	\mathbf{F}	Luxury	Medium	C1
20	F	Luxury	Large	C1

Which test condition is the best?

How to determine the best split

• Greedy approach:

- Nodes with purer class distribution are preferred

• Need a measure of node impurity:

C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

• Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^2$$

• Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the best split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - 1. Compute impurity measure of each child node
 - 2. M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)

Measure of Impurity: Entropy

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

- (NOTE: p(j | t) is the relative frequency of class j at node t).
- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

C1	1
C2	5

P(C1) = 1/6 P(C2) = 5/6Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Computing Information Gain after Splitting

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5 decision tree algorithms

Class exercise

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example from Han & Kamber Data Mining: Concepts and Techniques

Attribute Selection by Information Gain Computation

Class P: buys_computer = "yes"
Class N: buys_computer = "no"
I(p, n) = I(9, 5) =0.940
Compute the entropy for age:

age	pi	n _i	l(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3

no's. Hence

Gain(age) = I(p,n) - E(age) = 0.246

Similarly,

Gain(income) = 0.029 Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

Output: A Decision Tree for "*buys_computer*"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Other Attribute Selection Measures

- Gini index (CART, IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

GINI Index (IBM IntelligentMiner)

• If a data set *T* contains examples from *n* classes, gini index, gini(*T*) is defined as $gini(T) = 1 - \sum_{i=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class *j* in *T*.

• If a data set *T* is split into two subsets *T*₁ and *T*₂ with sizes *N*₁ and *N*₂ respectively, the *gini* index of the split data contains examples from *n* classes, the *gini* index *gini*(*T*) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

 The attribute provides the smallest gini_{split}(T) is chosen to split the node (need to enumerate all possible splitting points for each attribute).