Applied Analytics and Predictive Modeling Spring 2021
 Lecture-9

Lydia Manikonda manikl@rpi.edu

Today's agenda

- Decision trees
- Class exercises on building a decision tree manually

Decision Trees

Example of a Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Splitting Attributes

Model: Decision Tree

Another Example of Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Apply Model to Test Data

Start from the root of tree.

Test Data

Home	Marital	Annual	Defaulted Owner		
Status				Income	Borrower
:---	$	$	No	Married	80 K
:---	:---	:---			

Apply Model to Test Data

Decision Tree Classification Task

Tid				Attrib1
1	Yes	Large	125 K	No
2	No	Medium	100 K	No
3	No	Small	70 K	No
4	Yes	Medium	120 K	No
5	No	Large	95 K	Yes
6	No	Medium	60 K	No
7	Yes	Large	220 K	No
8	No	Small	85 K	Yes
9	No	Medium	75 K	No
10	No	Small	90 K	Yes

Tid			Attrib1	Attrib2
Attrib3	Class			
11	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Test Set

Decision Tree Induction

- Many Algorithms:
- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5
- SLIQ,SPRINT

General Structure of the Hunt's algorithm

- Let D_{t} be the set of training records that reach a node t
- General Procedure:
- If D_{t} contains records that belong the same class y_{t}, then t is a leaf node labeled as y
- If D_{t} contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's algorithm

Defaulted $=$ No

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Hunt's algorithm

Defaulted = No
(a)

(b)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Hunt's algorithm

(b)
(c)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's algorithm

Design Issues of Decision Tree Induction

- How should training records be split?
- Method for specifying test condition
- depending on attribute types
- Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
- Stop splitting if all the records belong to the same class or have identical attribute values
- Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
- Binary
- Nominal
- Ordinal
- Continuous
- Depends on number of ways to split
-2-way split
- Multi-way split

Test Condition for Nominal Attributes

- Multi-way split:
- Use as many partitions as distinct values.

- Binary split:
- Divides values into two subsets

Test Condition for Ordinal Attributes

- Multi-way split:
- Use as many partitions as distinct values.
- Binary split:
- Divides values into two subsets
- Preserve order property among attribute values

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
- Discretization to form an ordinal categorical attribute Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Static - discretize once at the beginning
- Dynamic - repeat at each node
- Binary Decision: $(\mathrm{A}<\mathrm{v})$ or ($\mathrm{A} \geq \mathrm{v}$)
- consider all possible splits and finds the best cut
- can be more compute intensive

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C 0
2	M	Sports	Medium	C 0
3	M	Sports	Medium	C 0
4	M	Sports	Large	C 0
5	M	Sports	Extra Large	C 0
6	M	Sports	Extra Large	C 0
7	F	Sports	Small	C 0
8	F	Sports	Small	C 0
9	F	Sports	Medium	C 0
10	F	Luxury	Large	C 0
11	M	Family	Large	C 1
12	M	Family	Extra Large	C 1
13	M	Family	Medium	C 1
14	M	Luxury	Extra Large	C 1
15	F	Luxury	Small	C 1
16	F	Luxury	Small	C 1
17	F	Luxury	Medium	C 1
18	F	Luxury	Medium	C 1
19	F	Luxury	Medium	C 1
20	F	Luxury	Large	C 1

Which test condition is the best?

How to determine the best split

- Greedy approach:
- Nodes with purer class distribution are preferred
- Need a measure of node impurity:

> C0: 5
> C1: 5

High degree of impurity

$$
\begin{aligned}
& \text { C0: } 9 \\
& \text { C1: } 1
\end{aligned}
$$

Low degree of impurity

Measures of Node Impurity

- Gini Index

$$
\operatorname{GINI}(t)=1-\sum_{j}[p(j \mid t)]^{2}
$$

- Entropy

$$
\text { Entropy }(t)=-\sum_{j} p(j \mid t) \log p(j \mid t)
$$

- Misclassification error

$$
\operatorname{Error}(t)=1-\max _{i} P(i \mid t)
$$

Finding the best split

1. Compute impurity measure (P) before splitting
2. Compute impurity measure (M) after splitting
3. Compute impurity measure of each child node
4. M is the weighted impurity of children
5. Choose the attribute test condition that produces the highest gain

$$
\text { Gain }=P-M
$$

or equivalently, lowest impurity measure after splitting (M)

Measure of Impurity: Entropy

- Entropy at a given node t :

$$
\operatorname{Entropy}(t)=-\sum_{j} p(j \mid t) \log p(j \mid t)
$$

- (NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).
- Maximum $\left(\log n_{c}\right)$ when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$
\text { Entropy }(t)=-\sum_{\lambda} p(j \mid t) \log _{2} p(j \mid t)
$$

C 1	$\mathbf{0}$
C 2	$\mathbf{6}$

$P(C 1)=0 / 6=0 \quad P(C 2)=6 / 6=1$
Entropy $=-0 \log 0-1 \log 1=-0-0=0$

C 1	$\mathbf{1}$
C 2	$\mathbf{5}$

$P(C 1)=1 / 6 \quad P(C 2)=5 / 6$
Entropy $=-(1 / 6) \log _{2}(1 / 6)-(5 / 6) \log _{2}(5 / 6)=0.65$

C 1	$\mathbf{2}$
C 2	$\mathbf{4}$

$P(C 1)=2 / 6 \quad P(C 2)=4 / 6$
Entropy $=-(2 / 6) \log _{2}(2 / 6)-(4 / 6) \log _{2}(4 / 6)=0.92$

Computing Information Gain after Splitting

- Information Gain

$$
G A I N_{\text {split }}=\operatorname{Entropy}(p)-\left(\sum_{i=1}^{k} \frac{n_{i}}{n} \operatorname{Entropy}(i)\right)
$$

Parent Node, p is split into k partitions; n_{i} is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5 decision tree algorithms

Class exercise

age	income	student	credit_rating	buys_computer
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

Attribute Selection by Information Gain Computation

```
■ Class P: buys_computer = "yes"
■Class N: buys_computer = "no"
\squareI(p,n)=I(9, 5)=0.940
\squareCompute the entropy for age:
```

age	p_{i}	n_{i}	$\mathrm{l}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right)$
$<=30$	2	3	0.971
$30 \ldots 40$	4	0	0
>40	3	2	0.971

$$
\begin{aligned}
E(\text { age }) & =\frac{5}{14} I(2,3)+\frac{4}{14} I(4,0) \\
& +\frac{5}{14} I(3,2)=0.694
\end{aligned}
$$

$$
\frac{5}{14} I(2,3) \text { means "age }<=30 \text { " has } 5 \text { out of }
$$

$$
14 \text { samples, with } 2 \text { yes'es and } 3
$$

no's. Hence
$\operatorname{Gain}($ age $)=I(p, n)-E($ age $)=0.246$
Similarly,
Gain $($ income $)=0.029$
$\operatorname{Gain}($ student $)=0.151$
Gain $($ credit_rating $)=0.048$

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning - majority voting is employed for classifying the leaf
- There are no samples left

Other Attribute Selection Measures

- Gini index (CART, IBM IntelligentMiner)
- All attributes are assumed continuous-valued
- Assume there exist several possible split values for each attribute
- May need other tools, such as clustering, to get the possible split values
- Can be modified for categorical attributes

GINI Index (IBM IntelligentMiner)

- If a data set T contains examples from n classes, gini index, $\operatorname{gini}(T)$ is defined as

$$
\operatorname{gini}(T)=1-\sum_{j=1}^{n} p_{j}^{2}
$$

where p_{j} is the relative frequency of class j in T.

- If a data set T is split into two subsets T_{1} and T_{2} with sizes N_{1} and N_{2} respectively, the gini index of the split data contains examples from n classes, the gini index $\operatorname{gini}(T)$ is defined as

$$
\operatorname{gini}_{\text {split }}(T)=\frac{N_{1}}{N} \operatorname{gini}\left(T_{1}\right)+\frac{N_{2}}{N} \operatorname{gini}\left(T_{2}\right)
$$

- The attribute provides the smallest $\operatorname{gini} i_{\text {split }}(T)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

